Counting the number of dominating sets of cactus chains

被引:0
|
作者
Alikhani, S. [1 ]
Jahari, S. [1 ]
Mehryar, M. [1 ]
Hasni, R. [2 ]
机构
[1] Yazd Univ, Dept Math, Yazd 89195741, Iran
[2] Univ Malaysia Terengganu, Fac Sci & Technol, Dept Math, Kuala Terengganu 21030, Malaysia
关键词
Domination polynomial; Dominating sets; Cactus; HOSOYA INDEX; GRAPH; TREES;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Let G be a simple graph of order n. The domination polynomial of G is the polynomial D(G, x) =Sigma(n)(n=r(g))d(G, i)x(i), where d(G,i) is the number of dominating sets of G of size i and r(G) is the domination number of G. The number of dominating sets of a graph G is D(G,1). In this paper we consider cactus chains with triangular and square blocks and study their domination polynomials.
引用
收藏
页码:955 / 960
页数:6
相关论文
共 50 条
  • [1] Counting Dominating Sets in Cactus Chains
    Borissevich, Kristina
    Doslic, Tomislav
    [J]. FILOMAT, 2015, 29 (08) : 1847 - 1855
  • [2] Counting the Number of Weakly Connected Dominating Sets of Graphs
    Alikhani, Saeid
    Jahari, Somayeh
    Mehryar, Mohammad
    [J]. MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2016, 10 (03): : 297 - 306
  • [3] Polynomial Space Algorithms for Counting Dominating Sets and the Domatic Number
    van Rooij, Johan M. M.
    [J]. ALGORITHMS AND COMPLEXITY, PROCEEDINGS, 2010, 6078 : 73 - 84
  • [4] Counting Minimal Dominating Sets
    Kante, Mamadou Moustapha
    Uno, Takeaki
    [J]. THEORY AND APPLICATIONS OF MODELS OF COMPUTATION (TAMC 2017), 2017, 10185 : 332 - 346
  • [5] A Polynomial Time Algorithm for Counting the Number of Independent Sets of Cactus Graphs
    Raymundo Marcial-Romero, J.
    Luna, Guillermo De Ita
    Lopez-Lopez, Aurelio
    Maria Valdovinos, Rosa
    [J]. 2016 FIFTEENTH MEXICAN INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (MICAI): ADVANCES IN ARTIFICIAL INTELLIGENCE, 2016, : 106 - 110
  • [6] Cactus graphs with unique minimum dominating sets
    Fischermann, M
    Volkmann, L
    [J]. UTILITAS MATHEMATICA, 2003, 63 : 229 - 238
  • [7] On the number of minimum dominating sets and total dominating sets in forests
    Petr, Jan
    Portier, Julien
    Versteegen, Leo
    [J]. JOURNAL OF GRAPH THEORY, 2024, 106 (04) : 976 - 993
  • [8] Counting Dominating Sets in Paths Solution
    Kwong, Harris
    Cook, Charlie
    Plaza, Angel
    [J]. FIBONACCI QUARTERLY, 2015, 53 (02): : 190 - 191
  • [9] Counting minimum weighted dominating sets
    Fomin, Fedor V.
    Stepanov, Alexey A.
    [J]. COMPUTING AND COMBINATORICS, PROCEEDINGS, 2007, 4598 : 165 - +
  • [10] Counting dominating sets and related structures in graphs
    Cutler, Jonathan
    Radcliffe, A. J.
    [J]. DISCRETE MATHEMATICS, 2016, 339 (05) : 1593 - 1599