Classical solutions for a class of fully nonlinear degenerate parabolic equations

被引:6
|
作者
Yin, Jingxue [1 ]
Li, Jing [1 ]
Jin, Chunhua [1 ]
机构
[1] Jilin Univ, Dept Math, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
Existence; Fully nonlinear; Parabolic; FREE MAGNETIC-FIELDS; RESISTIVE DIFFUSION; PASSIVE MEDIUM; SEMIGROUPS;
D O I
10.1016/j.jmaa.2009.06.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the existence and comparison principle of classical solutions for a class of fully nonlinear degenerate parabolic equations. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:119 / 129
页数:11
相关论文
共 50 条
  • [1] Strong solutions of a class of fully nonlinear degenerate parabolic equations
    Li, Jing
    Yin, Jingxue
    Jin, Chunhua
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (08) : 2025 - 2037
  • [2] On the existence of nonnegative continuous solutions for a class of fully nonlinear degenerate parabolic equations
    Li, Jing
    Yin, Jingxue
    Jin, Chunhua
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2010, 61 (05): : 835 - 847
  • [3] On the existence of nonnegative continuous solutions for a class of fully nonlinear degenerate parabolic equations
    Jing Li
    Jingxue Yin
    Chunhua Jin
    Zeitschrift für angewandte Mathematik und Physik, 2010, 61 : 835 - 847
  • [4] Classical solutions of fully nonlinear parabolic equations
    Yi Cao
    Dongsheng Li
    Lihe Wang
    Archiv der Mathematik, 2010, 95 : 53 - 61
  • [5] Classical solutions of fully nonlinear parabolic equations
    Cao, Yi
    Li, Dongsheng
    Wang, Lihe
    ARCHIV DER MATHEMATIK, 2010, 95 (01) : 53 - 61
  • [6] On the viscosity solutions to a class of nonlinear degenerate parabolic differential equations
    Tilak Bhattacharya
    Leonardo Marazzi
    Revista Matemática Complutense, 2017, 30 : 621 - 656
  • [7] Wavefront solutions for a class of nonlinear highly degenerate parabolic equations
    Cantarini, Marco
    Marcelli, Cristina
    Papalini, Francesca
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 332 : 278 - 305
  • [8] On the viscosity solutions to a class of nonlinear degenerate parabolic differential equations
    Bhattacharya, Tilak
    Marazzi, Leonardo
    REVISTA MATEMATICA COMPLUTENSE, 2017, 30 (03): : 621 - 656
  • [9] The asymptotic behavior of solutions for a class of doubly degenerate nonlinear parabolic equations
    Zhan, Huashui
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 370 (01) : 1 - 10
  • [10] Behaviors of solutions to a class of nonlinear degenerate parabolic equations not in divergence form
    Wang, Jian
    APPLIED MATHEMATICS LETTERS, 2011, 24 (02) : 191 - 195