Monte Carlo Simulation Of The Data Acquisition Chain Of Scintillation Detectors

被引:0
|
作者
Binda, F. [1 ]
Ericsson, G. [1 ]
Hellesen, C. [1 ]
Hjalmarsson, A. [1 ]
Eriksson, J. [1 ]
Skiba, M. [1 ]
Conroy, S. [1 ]
Weiszflog, M. [1 ]
机构
[1] Uppsala Univ, Dept Phys & Astron, Div Appl Nucl Phys, S-75120 Uppsala, Sweden
来源
FUSION REACTOR DIAGNOSTICS | 2014年 / 1612卷
关键词
Data acquisition; Scintillators; Photomultiplier tubes; Digitizers; NE213; Gamma-rays; Resolution; Monte Carlo;
D O I
10.1063/1.4894032
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The good performance of a detector can be strongly affected by the instrumentation used to acquire the data. The possibility of anticipating how the acquisition chain will affect the signal can help in finding the best solution among different set-ups. In this work we developed a Monte Carlo code that aims to simulate the effect of the various components of a digital Data Acquisition system (DAQ) applied to scintillation detectors. The components included in the model are: the scintillator, the photomultiplier tube (PMT), the signal cable and the digitizer. We benchmarked the code against real data acquired with a NE213 scintillator, comparing simulated and real signal pulses induced by gamma-ray interaction. Then we studied the dependence of the energy resolution of a pulse height spectrum (PHS) on the sampling frequency and the bit resolution of the digitizer. We found that exceeding some values of the sampling frequency and the bit resolution improves only marginally the performance of the system. The method can be applied for the study of various detector systems relevant for nuclear techniques, such as in fusion diagnostics.
引用
收藏
页码:101 / 104
页数:4
相关论文
共 50 条
  • [1] Monte Carlo Simulations of scintillation detectors for the use as dosemeters
    Alegria, N.
    Kessler, P.
    Gabay, K. -L.
    Legarda, F.
    Neumaier, S.
    Roettger, A.
    [J]. JOURNAL OF INSTRUMENTATION, 2021, 16 (09)
  • [2] MONTE-CARLO SIMULATION OF GAMMA-RAY DETECTORS USING SCINTILLATION FIBERS
    CHANEY, RC
    [J]. EUV, X-RAY, AND GAMMA-RAY INSTRUMENTATION FOR ASTRONOMY AND ATOMIC PHYSICS, 1989, 1159 : 18 - 26
  • [3] Monte-carlo simulation of ionospheric scintillation
    Mountcastle, PD
    Martin, MD
    [J]. PROCEEDINGS OF THE 2002 IEEE RADAR CONFERENCE, 2002, : 350 - 355
  • [4] Development of a Monte Carlo simulation for APD based PET detectors using continuous scintillation crystal
    Clowes, P
    McCallum, S
    Welch, A
    [J]. 2004 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-7, 2004, : 2591 - 2595
  • [5] Monte Carlo simulation of radon SSNT detectors
    Sima, O
    [J]. RADIATION MEASUREMENTS, 2001, 34 (1-6) : 181 - 186
  • [6] Monte Carlo simulation of discrete γ-ray detectors
    Bakkali, A
    Tamda, N
    Parmentier, M
    Chavanelle, J
    Pousse, A
    Kastler, B
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2005, 545 (03): : 699 - 704
  • [7] Monte Carlo simulation of hybrid pixel detectors
    Magalhaes, D. P.
    Tomal, A.
    [J]. RADIATION PHYSICS AND CHEMISTRY, 2020, 167 (167)
  • [8] Monte Carlo Simulation-Based Maximum-Likelihood Position Estimate for Monolithic Scintillation Detectors
    Jin Hyung Park
    Seung-Jae Lee
    [J]. Journal of the Korean Physical Society, 2019, 74 : 812 - 815
  • [9] Monte Carlo simulation studies on scintillation detectors and image reconstruction of brain-phantom tumors in TOFPET
    Mondal, Nagendra Nath
    [J]. JOURNAL OF MEDICAL PHYSICS, 2009, 34 (04) : 212 - 216
  • [10] Monte Carlo Simulation-Based Maximum-Likelihood Position Estimate for Monolithic Scintillation Detectors
    Park, Jin Hyung
    Lee, Seung-Jae
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2019, 74 (08) : 812 - 815