Multiscale Thermoelastic Analysis of the Thermal Expansion Coefficient and of Microscopic Thermal Stresses of Mature Concrete

被引:27
|
作者
Wang, Hui [1 ,2 ]
Mang, Herbert [1 ,2 ]
Yuan, Yong [1 ,3 ]
Pichler, Bernhard L. A. [2 ]
机构
[1] Tongji Univ, Coll Civil Engn, Shanghai 200092, Peoples R China
[2] Vienna Univ Technol, Inst Mech Mat & Struct, TU Wien, Karlspl 13-202, A-1040 Vienna, Austria
[3] Tongji Univ, State Key Lab Disaster Reduct Civil Engn, Shanghai 200092, Peoples R China
基金
奥地利科学基金会;
关键词
concrete; thermal expansion; microstresses; thermoelastic; temperature; CEMENT-BASED COMPOSITE; HIGH-PERFORMANCE CONCRETE; EARLY AGE COEFFICIENT; AUTOGENOUS-SHRINKAGE; ELEVATED-TEMPERATURES; ELASTIC PROPERTIES; BASIC CREEP; PART I; MICROMECHANICS; MODEL;
D O I
10.3390/ma12172689
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The thermal expansion coefficient and the microscopic thermal stresses of mature concrete depend on its microstructural composition and the internal relative humidity. This dependence is determined by means of thermoelastic multiscale analysis of concrete. The underlying multiscale model enables two types of scale transition. Firstly, bottom-up homogenization allows for the quantification of the thermal expansion coefficient and the elastic stiffness of concrete based on the Mori-Tanaka scheme. Secondly, top-down scale concentration gives access to the volume averaged stresses experienced by the cement paste, the fine and the coarse aggregates and, furthermore, to the stress states of the interfacial transition zones covering the aggregates. The proposed model is validated by comparing the predicted thermal expansion coefficient of concrete with independent sets of experimental measurements. Finally, sensitivity analyses are carried out to evaluate the influence of the volumetric composition and the internal relative humidity of concrete on the thermal expansion coefficient and the microscopic thermal stresses.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Multiscale quantification of thermal expansion of concrete and thermal stresses of concrete structures
    Wang, H.
    Mang, H. A.
    Yuan, Y.
    Pichler, B.
    [J]. COMPUTATIONAL MODELLING OF CONCRETE STRUCTURES. EURO-C 2018, 2018, : 257 - 264
  • [2] A multiscale model for predicting the coefficient of thermal expansion of concrete
    Cao, Xiuli
    [J]. AIP ADVANCES, 2021, 11 (11)
  • [3] Coefficient of Thermal Expansion of Concrete
    Tanesi, Jussara
    Crawford, Gary
    Gudimettla, Jagan
    Ardani, Ahmad
    [J]. Concrete International, 2012, 34 (04) : 55 - 60
  • [4] Evaluation of the Moisture Dependence of Concrete Coefficient of Thermal Expansion and Its Impacts on Thermal Deformations and Stresses of Concrete Pavements
    Mateos, Angel
    Harvey, John
    Feldman, Dulce Rufino
    Wu, Rongzong
    Paniagua, Julio
    Paniagua, Fabian
    [J]. TRANSPORTATION RESEARCH RECORD, 2020, 2674 (08) : 545 - 555
  • [5] Transient Thermoelastic Analysis of a Cylinder Having a Varied Coefficient of Thermal Expansion
    Shypul, Olga
    Myntiuk, Vitalii
    [J]. PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING, 2020, 64 (04): : 273 - 278
  • [6] The influence of thermal expansion coefficient on the stresses of thermal barrier coatings
    Chen, Xiaomei
    Zhang, Yue
    Gong, Shengkai
    [J]. Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 2005, 34 (SUPPL. 1 PART 2): : 638 - 639
  • [7] PREDICTION OF THERMAL COEFFICIENT OF EXPANSION OF CONCRETE
    EMANUEL, JH
    HULSEY, JL
    [J]. JOURNAL OF THE AMERICAN CONCRETE INSTITUTE, 1977, 74 (04): : 149 - 155
  • [8] A thermoelastic method for the measurement of thermal expansion coefficient of solids
    Beghi, MG
    Luzzi, L
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2000, 71 (01): : 154 - 160
  • [9] Thermal stresses and effective thermal expansion coefficient of a functionally gradient sphere
    Lutz, MP
    Zimmerman, RW
    [J]. JOURNAL OF THERMAL STRESSES, 1996, 19 (01) : 39 - 54
  • [10] Thermal expansion of cementite and thermoelastic stresses in white cast iron
    Hartmann, S.
    Ruppersberg, H.
    [J]. Materials Science and Engineering A, 1995, A190 (1-2) : 231 - 239