fastnet: An R Package for Fast Simulation and Analysis of Large-Scale Social Networks

被引:1
|
作者
Dong, Xu [1 ]
Castro, Luis [2 ]
Shaikh, Nazrul [3 ]
机构
[1] Tamr Inc, Cambridge, MA USA
[2] World Bank, 1818 H St NW, Washington, DC 20433 USA
[3] Cecareus Inc, Coral Gables, FL 33134 USA
来源
JOURNAL OF STATISTICAL SOFTWARE | 2020年 / 96卷 / 07期
关键词
social network analysis; network simulation; network metrics; multi-core processing; sampling; DYNAMICS;
D O I
10.18637/jss.v096.i07
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Traditional tools and software for social network analysis are seldom scalable and/or fast. This paper provides an overview of an R package called fastnet, a tool for scaling and speeding up the simulation and analysis of large-scale social networks. fastnet uses multi-core processing and sub-graph sampling algorithms to achieve the desired scale-up and speed-up. Simple examples, usages, and comparisons of scale-up and speed-up as compared to other R packages, i.e., igraph and statnet, are presented.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 50 条
  • [1] FastNet: Fast and Accurate Statistical Inference of Phylogenetic Networks Using Large-Scale Genomic Sequence Data
    Hejase, Hussein A.
    VandePol, Natalie
    Bonito, Gregory M.
    Liu, Kevin J.
    [J]. COMPARATIVE GENOMICS (RECOMB-CG 2018), 2018, 11183 : 242 - 259
  • [2] Social Influence Analysis in Large-scale Networks
    Tang, Jie
    Sun, Jimeng
    Wang, Chi
    Yang, Zi
    [J]. KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2009, : 807 - 815
  • [3] Analysis of large-scale social and information networks
    Kleinberg, Jon
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 371 (1987):
  • [4] Fast Representative Sampling in Large-Scale Online Social Networks
    Cai, Guangren
    Lu, Gang
    Guo, Junxia
    Ling, Cheng
    Li, Ruiqi
    [J]. IEEE ACCESS, 2020, 8 : 77106 - 77119
  • [5] Analysis, simulation and measurement in large-scale packet networks
    Mondragon, R.
    Moore, A.
    Pitts, J.
    Schormans, J.
    [J]. IET COMMUNICATIONS, 2009, 3 (06) : 887 - 905
  • [6] Analysis of influence maximization in large-Scale social networks
    Hu, Jie
    Meng, Kun
    Chen, Xiaomin
    Lin, Chuang
    Huang, Jiwei
    [J]. Performance Evaluation Review, 2014, 41 (04): : 78 - 81
  • [7] Large-scale analysis of grooming in modern social networks
    Lykousas, Nikolaos
    Patsakis, Constantinos
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2021, 176
  • [8] Fast Overlapping Communities Detection Algorithms for Large-Scale Social Networks
    Li, Zheng-Lian
    Ji, Li-Xin
    Huang, Rui-Yang
    Lan, Ju-Long
    [J]. Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2019, 47 (02): : 257 - 265
  • [9] SILGGM: An extensive R package for efficient statistical inference in large-scale gene networks
    Zhang, Rong
    Ren, Zhao
    Chen, Wei
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2018, 14 (08)
  • [10] Learning Large-Scale Bayesian Networks with the sparsebn Package
    Aragam, Bryon
    Gu, Jiaying
    Zhou, Qing
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2019, 91 (11): : 1 - 38