Knowledge-Aided Parametric Adaptive Matched Filter With Automatic Combining for Covariance Estimation

被引:28
|
作者
Wang, Pu [1 ]
Wang, Zhe [2 ]
Li, Hongbin [2 ]
Himed, Braham [3 ]
机构
[1] Stevens Inst Technol, Hoboken, NJ 07030 USA
[2] Stevens Inst Technol, Dept Elect & Comp Engn, Hoboken, NJ 07030 USA
[3] WPAFB, RF Technol Branch, Air Force Res Lab, AFRL RYMD, Dayton, OH 45433 USA
关键词
Knowledge-aided processing; multi-channel auto-regressive process; parametric adaptive matched filter; space-time adaptive processing (STAP); SIGNAL-DETECTION; AIRBORNE RADAR; NONHOMOGENEOUS ENVIRONMENTS; MATRICES; ALGORITHM; STAP;
D O I
10.1109/TSP.2014.2338838
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a knowledge-aided parametric adaptive matched filter (KA-PAMF) is proposed that utilizing both observations (including the test and training signals) and a priori knowledge of the spatial covariance matrix. Unlike existing KA-PAMF methods, the proposed KA-PAMF is able to automatically adjust the combining weight of a priori covariance matrix, thus gaining enhanced robustness against uncertainty in the prior knowledge. Meanwhile, the proposed KA-PAMF is significantly more efficient than its KA nonparametric counterparts when the amount of training signals is limited. One distinct feature of the proposed KA-PAMF is the inclusion of both the test and training signals for automatic determination of the combining weights for the prior spatial covariance matrix and observations. Numerical results are presented to demonstrate the effectiveness of the proposed KA-PAMF, especially in the limited training scenarios.
引用
收藏
页码:4713 / 4722
页数:10
相关论文
共 50 条
  • [1] KNOWLEDGE-AIDED PARAMETRIC ADAPTIVE MATCHED FILTER WITH AUTOMATIC COMBINING FOR COVARIANCE ESTIMATION
    Wang, Pu
    Li, Hongbin
    Wang, Zhe
    Himed, Braham
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [2] Knowledge-aided covariance estimation and radar adaptive detection
    Jin, Ke
    Zhang, Hongmin
    Wu, Jizhou
    Lai, Tao
    Zhao, Yongjun
    JOURNAL OF APPLIED REMOTE SENSING, 2021, 15 (01)
  • [3] An approach to knowledge-aided covariance estimation
    Melvin, William L.
    Showman, Gregory A.
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2006, 42 (03) : 1021 - 1042
  • [4] Knowledge-aided covariance matrix estimation: a MAXDET approach
    De Maio, A.
    De Nicola, S.
    Landi, L.
    Farina, A.
    IET RADAR SONAR AND NAVIGATION, 2009, 3 (04): : 341 - 356
  • [5] The enhanced fracta algorithm with knowledge-aided covariance estimation
    Blunt, SD
    Gerlach, K
    Rangaswamy, M
    2004 IEEE SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP, 2004, : 638 - 642
  • [6] Knowledge-Aided Covariance Matrix Estimation: a MAXDET Approach
    Landi, L.
    De Maio, A.
    De Nicola, S.
    Farina, A.
    2008 IEEE RADAR CONFERENCE, VOLS. 1-4, 2008, : 1702 - +
  • [7] Knowledge-Aided Covariance Matrix Estimation and Adaptive Detection in Compound-Gaussian Noise
    Bandiera, Francesco
    Besson, Olivier
    Ricci, Giuseppe
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (10) : 5390 - 5396
  • [8] Model-Based Clutter Cancellation Based on Enhanced Knowledge-Aided Parametric Covariance Estimation
    Bang, Jeong Hwan
    Melvin, William L.
    Lanterman, Aaron D.
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2015, 51 (01) : 154 - 166
  • [9] STAP using knowledge-aided covariance estimation and the FRACTA algorithm
    Blunt, Shannon D.
    Gerlach, Karl
    Rangaswamy, Muralidhar
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2006, 42 (03) : 1043 - 1057
  • [10] Knowledge-aided Shrinkage Interference Covariance Matrix Estimation in STAP
    Han, Sudan
    Fan, Chongyi
    Huang, Xiaotao
    PROCEEDINGS OF 2015 INTERNATIONAL CONFERENCE ON ESTIMATION, DETECTION AND INFORMATION FUSION ICEDIF 2015, 2015, : 259 - 263