High order numerical derivatives for one-dimensional scattered noisy data

被引:24
|
作者
Wei, T. [1 ]
Li, M. [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
关键词
numerical derivatives; radial basis function; Tikhonov regularization;
D O I
10.1016/j.amc.2005.09.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on the smoothing spline approximation, in this paper we propose a regularization method for computing high order numerical derivatives from one-dimensional noisy data. The convergence rates under two different choices of the regularization parameter are obtained. Numerical examples show that the proposed method is effective and stable. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:1744 / 1759
页数:16
相关论文
共 50 条
  • [1] Numerical derivatives from one-dimensional scattered noisy data
    Wei, T
    Hon, YC
    Second International Conference on Inverse Problems: Recent Theoretical Developments and Numerical Approaches, 2004, 2005, 12 : 171 - 179
  • [2] Reconstruction of numerical derivatives from scattered noisy data
    Wei, T
    Hon, YC
    Wang, YB
    INVERSE PROBLEMS, 2005, 21 (02) : 657 - 672
  • [3] DETECTION OF STEP EDGES IN NOISY ONE-DIMENSIONAL DATA
    DAVIS, LS
    ROSENFELD, A
    IEEE TRANSACTIONS ON COMPUTERS, 1975, 24 (10) : 1006 - 1010
  • [4] HIGH-ORDER NUMERICAL SCHEMES FOR ONE-DIMENSIONAL NONLOCAL CONSERVATION LAWS
    Chalons, Christophe
    Goatin, Paola
    Villada, Luis M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (01): : A288 - A305
  • [5] NUMERICAL METHODS OF HIGH-ORDER ACCURACY FOR ONE-DIMENSIONAL DIFFUSION EQUATION
    HENNART, JP
    NUCLEAR SCIENCE AND ENGINEERING, 1973, 50 (03) : 185 - 199
  • [6] Numerical approximation of the percentage of order for one-dimensional maps
    Livadiotis, G
    ADVANCES IN COMPLEX SYSTEMS, 2005, 8 (01): : 15 - 32
  • [7] Noisy precursors in one-dimensional patterns
    Agez, G
    Szwaj, C
    Louvergneaux, E
    Glorieux, P
    PHYSICAL REVIEW A, 2002, 66 (06): : 4
  • [8] One-dimensional VGGNet for high-dimensional data
    Feng, Sheng
    Zhao, Liping
    Shi, Haiyan
    Wang, Mengfei
    Shen, Shigen
    Wang, Weixing
    APPLIED SOFT COMPUTING, 2023, 135
  • [9] Numerical methods for some one-dimensional equations with fractional derivatives
    Goloviznin, V. M.
    Korotkin, I. A.
    DIFFERENTIAL EQUATIONS, 2006, 42 (07) : 967 - 973
  • [10] Numerical methods for some one-dimensional equations with fractional derivatives
    V. M. Goloviznin
    I. A. Korotkin
    Differential Equations, 2006, 42 : 967 - 973