A numerical scheme for the simulation of blow-up in the nonlinear Schrodinger equation

被引:9
|
作者
Jiménez, S
Llorente, IM
Mancho, AM
Pérez-García, VM
Vázquez, L
机构
[1] Univ Castilla La Mancha, Escuela Tecn Super Ingenieros Ind, Dept Matemat, E-13071 Ciudad Real, Spain
[2] Univ Alfonso X Sabio, Dept Matemat & Fis Aplicada, Madrid 28691, Spain
[3] Univ Complutense Madrid, Fac CC Fis, Dept Arquitectura Comp & Automat, E-28040 Madrid, Spain
[4] CSIC, INTA, Ctr Astrobiol, Madrid 28850, Spain
[5] Univ Complutense Madrid, Fac Informat, Dept Matemat Aplicada, E-28040 Madrid, Spain
关键词
finite difference schemes; blow-up; nonlinear Schrodinger equations; multigrid methods;
D O I
10.1016/S0096-3003(01)00282-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a self-adaptive multigrid version of a conservative finite difference scheme useful for the study of collapse processes in nonlinear Schrodinger equations (NLSEs). As an example we study the character of the focusing singularity of the two-dimensional critical NLSE. (C) 2002 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:271 / 291
页数:21
相关论文
共 50 条
  • [1] Numerical simulation of blow-up solutions of the vector nonlinear Schrodinger equation
    Coleman, J
    Sulem, C
    [J]. PHYSICAL REVIEW E, 2002, 66 (03): : 1 - 036701
  • [2] ON BLOW-UP CRITERION FOR THE NONLINEAR SCHRODINGER EQUATION
    Du, Dapeng
    Wu, Yifei
    Zhang, Kaijun
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (07) : 3639 - 3650
  • [3] Numerical approximation of blow-up of radially symmetric solutions of the nonlinear Schrodinger equation
    Akrivis, GD
    Dougalis, VA
    Karakashian, OA
    McKinney, WR
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 25 (01): : 186 - 212
  • [4] Blow-up for the nonlinear Schrodinger equation in nonisotropic spaces
    Martel, Y
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (12) : 1903 - 1908
  • [5] On the blow-up solutions for the nonlinear fractional Schrodinger equation
    Zhu, Shihui
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (02) : 1506 - 1531
  • [6] Blow-up criteria for the inhomogeneous nonlinear Schrodinger equation
    Yang, Han
    Zhu, Shihui
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [7] Numerical blow-up for a nonlinear heat equation
    Firmin K. N’Gohisse
    Théodore K. Boni
    [J]. Acta Mathematica Sinica, English Series, 2011, 27 : 845 - 862
  • [8] Numerical blow-up for a nonlinear heat equation
    N'Gohisse, Firmin K.
    Boni, Theodore K.
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (05) : 845 - 862
  • [9] The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrodinger equation
    Merle, F
    Raphael, P
    [J]. ANNALS OF MATHEMATICS, 2005, 161 (01) : 157 - 222
  • [10] BLOW-UP OF SOLUTIONS OF CAUCHY PROBLEM FOR NONLINEAR SCHRODINGER EQUATION
    Sakbaev, V. Zh.
    [J]. VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2013, (01): : 159 - 171