Collective edge modes in fractional quantum Hall systems

被引:7
|
作者
Nguyen, HK [1 ]
Joglekar, YN
Murthy, G
机构
[1] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA
[2] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevB.70.035324
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Over the past few years one of us (Murthy) in collaboration with Shankar has developed an extended Hamiltonian formalism capable of describing the ground-state and low-energy excitations in the fractional quantum Hall regime. The Hamiltonian, expressed in terms of composite fermion operators, incorporates all the nonperturbative features of the fractional Hall regime, so that conventional many-body approximations such as Hartree-Fock and time-dependent Hartree-Fock are applicable. We apply this formalism to develop a microscopic theory of the collective edge modes in fractional quantum Hall regime. We present the results for edge mode dispersions at principal filling factors nu=1/3, 1/5, and 2/5 for systems with unreconstructed edges. The primary advantage of the method is that one works in the thermodynamic limit right from the beginning, thus avoiding the finite-size effects which ultimately limit exact diagonalization studies.
引用
收藏
页码:035324 / 1
页数:10
相关论文
共 50 条
  • [1] Collective edge modes of a quantum Hall ferromagnet in graphene
    Mazo, V.
    Fertig, H. A.
    Shimshoni, E.
    [J]. PHYSICAL REVIEW B, 2012, 86 (12):
  • [2] Quench Dynamics of Collective Modes in Fractional Quantum Hall Bilayers
    Liu, Zhao
    Balram, Ajit C.
    Papic, Zlatko
    Gromov, Andrey
    [J]. PHYSICAL REVIEW LETTERS, 2021, 126 (07)
  • [3] Edge reconstructions in fractional quantum Hall systems
    Joglekar, YN
    Nguyen, HK
    Murthy, G
    [J]. PHYSICAL REVIEW B, 2003, 68 (03)
  • [4] Quantum transport and the edge modes in the hierarchy fractional quantum Hall liquid
    Nagaosa, N
    Kohmoto, M
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 1996, 29 : S151 - S155
  • [5] Identification of the fractional quantum Hall edge modes by density oscillations
    Jiang, Na
    Hu, Zi-Xiang
    [J]. PHYSICAL REVIEW B, 2016, 94 (12)
  • [6] Nonequilibrated Counterpropagating Edge Modes in the Fractional Quantum Hall Regime
    Grivnin, Anna
    Inoue, Hiroyuki
    Ronen, Yuval
    Baum, Yuval
    Heiblum, Moty
    Umansky, Vladimir
    Mahalu, Diana
    [J]. PHYSICAL REVIEW LETTERS, 2014, 113 (26)
  • [7] Aharonov–Bohm interference of fractional quantum Hall edge modes
    J. Nakamura
    S. Fallahi
    H. Sahasrabudhe
    R. Rahman
    S. Liang
    G. C. Gardner
    M. J. Manfra
    [J]. Nature Physics, 2019, 15 : 563 - 569
  • [8] Edge modes in the fractional quantum Hall effect without extra edge fermions
    Lima, G. L. S.
    Dias, S. A.
    [J]. EPL, 2011, 94 (03)
  • [9] Edge modes in the hierarchical fractional quantum Hall liquids with Coulomb interaction
    Morinari, T
    Nagaosa, N
    [J]. SOLID STATE COMMUNICATIONS, 1996, 100 (03) : 163 - 167
  • [10] Thermoelectric Probe for Neutral Edge Modes in the Fractional Quantum Hall Regime
    Viola, Giovanni
    Das, Sourin
    Grosfeld, Eytan
    Stern, Ady
    [J]. PHYSICAL REVIEW LETTERS, 2012, 109 (14)