Maximal asymptotic biases of M-estimators of location with preliminary scale estimates

被引:4
|
作者
Collins, JR [1 ]
Szatmari-Voicu, D [1 ]
机构
[1] Univ Calgary, Dept Math & Stat, Calgary, AB T2N 1N4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
robust estimation; M-estimators; location parameter; preliminary scale estimates; maximal asymptotic bias;
D O I
10.1081/STA-120037447
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the problem of finding the maximal asymptotic bias of an M-estimator of a location parameter, using a preliminary estimate of the unknown scale parameter, when the error distribution is assumed to lie in an epsilon-contamination neighborhood of a fixed symmetric unimodal distribution. The least favorable contaminating distribution is shown to put all its mass at infinity under some fairly general conditions. A particular case considered is that of the auxiliary scale estimator being a location-invariant and scale-equivariant version of a trimmed variance.
引用
收藏
页码:1877 / 1886
页数:10
相关论文
共 50 条