Multimodel Ensemble Prediction System for Space Weather Applications

被引:0
|
作者
Schunk, R. W. [1 ]
Scherliess, L. [1 ]
Eccles, V. [1 ]
Gardner, L. C. [1 ]
Sojka, J. J. [1 ]
Zhu, L. [1 ]
Pi, X. [2 ]
Mannucci, A. J. [2 ]
Butala, Mark [2 ]
Wilson, B. D. [2 ]
Komjathy, A. [2 ]
Wang, C. [3 ]
Rosen, G. [3 ]
机构
[1] Utah State Univ, Ctr Atmospher & Space Sci, Logan, UT 84322 USA
[2] Jet Prop Lab, Pasadena, CA 91109 USA
[3] Univ So Calif, Los Angeles, CA 90007 USA
基金
美国国家航空航天局;
关键词
D O I
暂无
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
The Earth's Ionosphere-Thermosphere-Electrodynamics (I-T-E) system is highly nonlinear and varies markedly on a range of spatial and temporal scales. Recently, we have created a Multimodel Ensemble Prediction System (MEP S) that is based on data assimilation models, with the goal being to specify and forecast the global I-T-E system (Schunk et al., 2012). Our team has 7 first-principles-based data assimilation models for the ionosphere, ionosphere-plasmasphere, thermosphere, high-latitude ionosphere-electrodynamics, and mid-low latitude ionosphere-electrodynamics. Hence, we can conduct ensemble modeling of the I-T-E system with different data assimilation models and then compare model reconstructions, which should help distinguish between the underlying physics and model artifacts.
引用
收藏
页码:725 / 729
页数:5
相关论文
共 50 条
  • [1] Space weather forecasting with a Multimodel Ensemble Prediction System (MEPS)
    Schunk, R. W.
    Scherliess, L.
    Eccles, V.
    Gardner, L. C.
    Sojka, J. J.
    Zhu, L.
    Pi, X.
    Mannucci, A. J.
    Butala, M.
    Wilson, B. D.
    Komjathy, A.
    Wang, C.
    Rosen, G.
    RADIO SCIENCE, 2016, 51 (07) : 1157 - 1165
  • [2] Fog Prediction from a Multimodel Mesoscale Ensemble Prediction System
    Zhou, Binbin
    Du, Jun
    WEATHER AND FORECASTING, 2010, 25 (01) : 303 - 322
  • [3] The Use of Ensemble Clustering on a Multimodel Ensemble for Medium-Range Forecasting at the Weather Prediction Center
    Lamberson, William S.
    Bodner, Michael J.
    Nelson, James A.
    Sienkiewicz, Sara A.
    WEATHER AND FORECASTING, 2023, 38 (04) : 539 - 554
  • [4] Multimodel ensemble forecasts for weather and seasonal climate
    Krishnamurti, TN
    Kishtawal, CM
    Zhang, Z
    LaRow, T
    Bachiochi, D
    Williford, E
    Gadgil, S
    Surendran, S
    JOURNAL OF CLIMATE, 2000, 13 (23) : 4196 - 4216
  • [5] A Probabilistic Multimodel Ensemble Approach to Seasonal Prediction
    Min, Young-Mi
    Kryjov, Vladimir N.
    Park, Chung-Kyu
    WEATHER AND FORECASTING, 2009, 24 (03) : 812 - 828
  • [6] Multimodel Ensemble ENSO Prediction with CCSM and CFS
    Kirtman, Ben P.
    Min, Dughong
    MONTHLY WEATHER REVIEW, 2009, 137 (09) : 2908 - 2930
  • [7] Development of a European multimodel ensemble system for seasonal-to-interannual prediction (DEMETER)
    Palmer, TN
    Alessandri, A
    Andersen, U
    Cantelaube, P
    Davey, M
    Délécluse, P
    Déqué, M
    Díez, E
    Doblas-Reyes, FJ
    Feddersen, H
    Graham, R
    Gualdi, S
    Guérémy, JF
    Hagedorn, R
    Hoshen, M
    Keenlyside, N
    Latif, M
    Lazar, A
    Maisonnave, E
    Marletto, V
    Morse, AP
    Orfila, B
    Rogel, P
    Terres, JM
    Thomson, MC
    BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2004, 85 (06) : 853 - +
  • [8] Toward a framework for the multimodel ensemble prediction of soil nitrogen losses
    Liao, Kaihua
    Lv, Ligang
    Lai, Xiaoming
    Zhu, Qing
    ECOLOGICAL MODELLING, 2021, 456
  • [9] Global sea surface temperature prediction using a multimodel ensemble
    Kug, Jong-Seong
    Lee, June-Yi
    Kang, In-Sik
    MONTHLY WEATHER REVIEW, 2007, 135 (09) : 3239 - 3247
  • [10] System identification, modeling, and prediction for space weather environments
    Vassiliadis, D
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2000, 28 (06) : 1944 - 1955