Importance of Schottky barriers for wide-bandgap thermoelectric devices

被引:0
|
作者
Wais, M. [1 ]
Held, K. [1 ]
Battiato, M. [2 ]
机构
[1] TU Wien, Inst Solid State Phys, Vienna, Austria
[2] Nanyang Technol Univ, 21 Nanyang Link, Singapore, Singapore
来源
PHYSICAL REVIEW MATERIALS | 2018年 / 2卷 / 04期
基金
奥地利科学基金会; 欧洲研究理事会;
关键词
DIFFUSION; FIGURE; MERIT; INTERFACES; TRANSPORT; OXIDE;
D O I
10.1103/PhysRevMaterials.2.045402
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The development of thermoelectric devices faces not only the challenge of optimizing the Seebeck coefficient, the electrical and thermal conductivity of the active material, but also further bottlenecks when going from the thermoelectric material to an actual device, e.g., the dopant diffusion at the hot contact. We show that for large bandgap thermoelectrics another aspect can dramatically reduce the efficiency of the device: the formation of Schottky barriers. Understanding the effect, it can then be fixed rather cheaply by a two-metal contact solution.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Barriers to the Adoption of Wide-Bandgap Semiconductors for Power Electronics
    Kizilyalli, I. C.
    Carlson, E. P.
    Cunningham, D. W.
    [J]. 2018 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2018,
  • [2] Reliability and reliability investigation of wide-bandgap power devices
    Lutz, Josef
    Franke, Joerg
    [J]. MICROELECTRONICS RELIABILITY, 2018, 88-90 : 550 - 556
  • [3] Uncovering the State of Adoption of Wide-Bandgap Power Devices
    Bindra, Ashok
    [J]. IEEE POWER ELECTRONICS MAGAZINE, 2018, 5 (01): : 4 - 6
  • [4] Wide-Bandgap Power Devices Adoption gathers momentum
    Bindra, Ashok
    [J]. IEEE POWER ELECTRONICS MAGAZINE, 2018, 5 (01): : 22 - 27
  • [5] RF-enhanced contacts to wide-bandgap devices
    Simin, G.
    Yang, Z. J.
    [J]. IEEE ELECTRON DEVICE LETTERS, 2007, 28 (01) : 2 - 4
  • [6] Designing Gate Drivers for Wide-Bandgap Power Devices
    Bindra, Ashok
    [J]. IEEE POWER ELECTRONICS MAGAZINE, 2019, 6 (03): : 4 - 6
  • [7] The ultraviolet radiation detectors based on wide-bandgap Schottky barrier structures
    Blank, TV
    Goldberg, YA
    Konstantinov, OV
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2002, 487 (1-2): : 60 - 64
  • [8] Defect Characterization, Imaging, and Control in Wide-Bandgap Semiconductors and Devices
    L. J. Brillson
    G. M. Foster
    J. Cox
    W. T. Ruane
    A. B. Jarjour
    H. Gao
    H. von Wenckstern
    M. Grundmann
    B. Wang
    D. C. Look
    A. Hyland
    M. W. Allen
    [J]. Journal of Electronic Materials, 2018, 47 : 4980 - 4986
  • [9] Defect Characterization, Imaging, and Control in Wide-Bandgap Semiconductors and Devices
    Brillson, L. J.
    Foster, G. M.
    Cox, J.
    Ruane, W. T.
    Jarjour, A. B.
    Gao, H.
    Von Wenckstern, H.
    Grundmann, M.
    Wang, B.
    Look, D. C.
    Hyland, A.
    Allen, M. W.
    [J]. JOURNAL OF ELECTRONIC MATERIALS, 2018, 47 (09) : 4980 - 4986
  • [10] Towards Lightweight Magnetic Components for Converters with Wide-bandgap Devices
    Calderon-Lopez, G.
    Todd, R.
    Forsyth, A. J.
    Wang, J.
    Wang, W.
    Yuan, X.
    Aldhaher, S.
    Kwan, C.
    Yates, D.
    Mitcheson, P. D.
    [J]. 2020 IEEE 9TH INTERNATIONAL POWER ELECTRONICS AND MOTION CONTROL CONFERENCE (IPEMC2020-ECCE ASIA), 2020, : 3149 - 3155