Rings of Invariant Module Type and Automorphism-Invariant Modules

被引:23
|
作者
Singh, Surjeet [1 ]
Srivastava, Ashish K. [2 ]
机构
[1] House 424,Sect 35 A, Chandigarh 160036, India
[2] St Louis Univ, Dept Math & Comp Sci, St Louis, MO 63103 USA
关键词
rings of invariant module type; automorphism-invariant modules; quasi-injective modules; pseudo-injective modules; ALGEBRAS;
D O I
10.1090/conm/609/12090
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A module is called automorphism-invariant if it is invariant under any automorphism of its injective hull. In [Algebras for which every indecomposable right module is invariant in its injective envelope, Pacific J. Math., vol. 31, no. 3 (1969), 655-658] Dickson and Fuller had shown that if R is a finite-dimensional algebra over a field F with more than two elements then an indecomposable automorphism-invariant right R-module must be quasi-injective. In this paper we show that this result fails to hold if F is a field with two elements. Dickson and Fuller had further shown that if R is a finite-dimensional algebra over a field IF with more than two elements, then R is of right invariant module type if and only if every indecomposable right R-module is automorphism-invariant. We extend the result of Dickson and Fuller to any right artinian ring. A ring R is said to be of right automorphism-invariant type (in short, RAI-type) if every finitely generated indecomposable right R-module is automorphism-invariant. In this paper we completely characterize an indecomposable right artinian ring of RAI-type.
引用
下载
收藏
页码:299 / +
页数:3
相关论文
共 50 条
  • [1] Automorphism-invariant modules
    Alahmadi, Abel
    Facchini, Alberto
    Nguyen Khanh Tung
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2015, 133 : 241 - 259
  • [2] Automorphism-Invariant Modules
    Tuganbaev A.A.
    Journal of Mathematical Sciences, 2015, 206 (6) : 694 - 698
  • [3] On automorphism-invariant modules
    Truong Cong Quynh
    Kosan, M. Tamer
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2015, 14 (05)
  • [4] Automorphism-Invariant Modules
    Guil Asensio, Pedro A.
    Srivastava, Ashish K.
    NONCOMMUTATIVE RINGS AND THEIR APPLICATIONS, 2015, 634 : 19 - 30
  • [5] Automorphism-invariant non-singular rings and modules
    Tuganbaev, A. A.
    JOURNAL OF ALGEBRA, 2017, 485 : 247 - 253
  • [6] Dual automorphism-invariant modules over perfect rings
    Abyzov, A. N.
    Quynh, T. C.
    Tai, D. D.
    SIBERIAN MATHEMATICAL JOURNAL, 2017, 58 (05) : 743 - 751
  • [7] Dual automorphism-invariant modules over perfect rings
    A. N. Abyzov
    T. C. Quynh
    D. D. Tai
    Siberian Mathematical Journal, 2017, 58 : 743 - 751
  • [8] Dual automorphism-invariant modules
    Singh, Surjeet
    Srivastava, Ashish K.
    JOURNAL OF ALGEBRA, 2012, 371 : 262 - 275
  • [9] Rings for which every cyclic module is dual automorphism-invariant
    Kosan, M. Tamer
    Nguyen Thi Thu Ha
    Truong Cong Quynh
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2016, 15 (05)
  • [10] On Automorphism-Invariant Rings with Chain Conditions
    Truong Cong Quynh
    Kosan, Muhammet Tamer
    Le Van Thuyet
    VIETNAM JOURNAL OF MATHEMATICS, 2020, 48 (01) : 23 - 29