HybridTuner: Tuning with Hybrid Derivative-Free Optimization Initialization Strategies

被引:0
|
作者
Sauk, Benjamin [1 ]
Sahinidis, Nikolaos V. [2 ,3 ]
机构
[1] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA
[2] Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
Autotuners; Derivative-free optimization; GPU computing; PATTERN SEARCH; ALGORITHMS; SOFTWARE; GEMM;
D O I
10.1007/978-3-030-92121-7_29
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To utilize the full potential of advanced computer architectures, algorithms often need to be tuned to the architecture being used. We propose two hybrid derivative-free optimization (DFO) methods to maximize the performance of an algorithm after evaluating a small number of possible algorithmic configurations. Our autotuner (a) reduces the execution time of dense matrix multiplication by a factor of 1.4x compared to state-of-the-art autotuners, (b) identifies high-quality tuning parameters within only 5% of the computational effort required by other autotuners and (c) can be applied to any computer architecture.
引用
收藏
页码:379 / 393
页数:15
相关论文
共 50 条
  • [1] Tuning BARON using derivative-free optimization algorithms
    Liu, Jianfeng
    Ploskas, Nikolaos
    Sahinidis, Nikolaos V.
    JOURNAL OF GLOBAL OPTIMIZATION, 2019, 74 (04) : 611 - 637
  • [2] Tuning BARON using derivative-free optimization algorithms
    Jianfeng Liu
    Nikolaos Ploskas
    Nikolaos V. Sahinidis
    Journal of Global Optimization, 2019, 74 : 611 - 637
  • [3] Autotune: A Derivative-free Optimization Framework for Hyperparameter Tuning
    Koch, Patrick
    Golovidov, Oleg
    Gardner, Steven
    Wujek, Brett
    Griffin, Joshua
    Xu, Yan
    KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2018, : 443 - 452
  • [4] ADAPTIVE INTERPOLATION STRATEGIES IN DERIVATIVE-FREE OPTIMIZATION: A CASE STUDY
    Hare, W.
    Jaberipour, M.
    PACIFIC JOURNAL OF OPTIMIZATION, 2018, 14 (02): : 327 - 347
  • [5] Decomposition in derivative-free optimization
    Kaiwen Ma
    Nikolaos V. Sahinidis
    Sreekanth Rajagopalan
    Satyajith Amaran
    Scott J Bury
    Journal of Global Optimization, 2021, 81 : 269 - 292
  • [6] Efficient derivative-free optimization
    Belitz, Paul
    Bewley, Thomas
    PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2007, : 5607 - 5612
  • [7] Decomposition in derivative-free optimization
    Ma, Kaiwen
    Sahinidis, Nikolaos V.
    Rajagopalan, Sreekanth
    Amaran, Satyajith
    Bury, Scott J.
    JOURNAL OF GLOBAL OPTIMIZATION, 2021, 81 (02) : 269 - 292
  • [8] SURVEY OF DERIVATIVE-FREE OPTIMIZATION
    Xi, Min
    Sun, Wenyu
    Chen, Jun
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2020, 10 (04): : 537 - 555
  • [9] Derivative-free optimization methods
    Larson, Jeffrey
    Menickelly, Matt
    Wild, Stefan M.
    ACTA NUMERICA, 2019, 28 : 287 - 404
  • [10] Derivative-Free and Blackbox Optimization
    Huyer, W.
    MONATSHEFTE FUR MATHEMATIK, 2020, 192 (02): : 480 - 480