Thermal analyses of heat source assembly for a dual loop, Turbo-Brayton Radioisotope power system

被引:11
|
作者
El-Genk, Mohamed S. [1 ,2 ,3 ,4 ]
Schriener, Timothy M. [1 ,2 ]
Breedlove, Jeffrey J. [5 ]
机构
[1] Univ New Mexico, Inst Space & Nucl Power Studies, Albuquerque, NM 87131 USA
[2] Univ New Mexico, Nucl Engn Dept, Albuquerque, NM 87131 USA
[3] Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA
[4] Univ New Mexico, Chem & Biol Engn Dept, Albuquerque, NM 87131 USA
[5] Creare LLC, Hanover, NH USA
基金
美国国家航空航天局;
关键词
Radioisotope power system; General Purpose Heat Source; Heat source assembly; Computational fluid dynamics; Turbo-Brayton conversion; Space exploration; Thermal radiation; Helical coils heat exchanger;
D O I
10.1016/j.tsep.2019.01.008
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper presents the results of 3-D thermal analyses of the heat source assembly (HSA) for a dual-loop, Turbo-Brayton Radioisotope Power System (RPS) for generating in excess of 300 W-e. The HSA with 6 Step 2 General Purpose Heat Source (GPHS) modules, is thermally coupled to two Brayton loops, each with a 300 W-e TurboBrayton unit. Results show that with either vacuum or helium gas in all internal gaps and voids of the GPHS modules the temperatures of the (PuO2)-Pu-238 fuel pellets, the Iridium (Ir) alloy cladding, and the Fine Weave Pierced Fabric (FWPF) aeroshell are largely within safe margins. With vacuum in all internal gaps and voids, the highest aeroshell is 1271 K which is 102 K below the NASA specified maximum of 1373 K to limit potential heating of the Ir-alloy cladding during an unlikely reentry. The Ir alloy cladding temperature is >= 300 K above the suggested low limit of 1173 K, and >= 112 K below its recrystallization temperature of 1603 K. With helium gas in all internal gaps and voids, the highest surface temperature of the aeroshell is >= 145 K below 1373 K, while that of the Ir-alloy cladding is 80 K above the suggested minimum temperature (1173 K) to maintain ductility and 326 K below that for recrystallization and the onset of grain growth.
引用
收藏
页码:82 / 91
页数:10
相关论文
共 38 条
  • [1] An advanced turbo-Brayton converter for radioisotope power systems
    Zagarola, MV
    Izenson, MG
    Breedlove, JJ
    O'Connor, GM
    Ketchum, AC
    Jetley, RL
    Simons, JK
    [J]. SPACE TECHNOLOGY AND APPLICATIONS INTERNATIONAL FORUM-STAIF 2005, 2005, 746 : 632 - 640
  • [2] Miniature turbo-Brayton technologies for space-borne thermal-to-electric power converters
    Zagarola, MV
    Swift, WL
    McCormick, JA
    Izenson, MG
    [J]. SPACE TECHNOLOGY AND APPLICATIONS INTERNATIONAL FORUM-STAIF 2002, 2002, 608 : 929 - 938
  • [3] DEVELOPMENT OF A HEAT SOURCE ASSEMBLY FOR AN ISOTOPE BRAYTON SPACE POWER CONVERSION SYSTEM
    WEIN, D
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1975, 11 (05) : 955 - 955
  • [4] Modular Stirling Radioisotope Power System (SRPS) using an advanced heat source
    Moul, DS
    [J]. SPACE TECHNOLOGY AND APPLICATIONS INTERNATIONAL FORUM-2001, 2001, 552 : 995 - 997
  • [5] PRELIMINARY INVESTIGATION OF A COMBINED HEAT AND POWER REVERSIBLE-BRAYTON SYSTEM INTEGRATED WITH A RENEWABLE POWER SOURCE
    Ancona, Maria Alessandra
    Bianchi, Michele
    Branchini, Lisa
    De Pascale, Andrea
    Melino, Francesco
    Ottaviano, Saverio
    Peretto, Antonio
    Poletto, Chiara
    [J]. PROCEEDINGS OF ASME TURBO EXPO 2023: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2023, VOL 8, 2023,
  • [6] Thermal analyses of high-power advanced thermoacoustic radioisotope power system for future space exploration missions
    Schriener, Timothy M.
    El-Genk, Mohamed S.
    [J]. NUCLEAR ENGINEERING AND DESIGN, 2021, 385
  • [7] Dual ORC-Brayton power system for waste heat recovery in heavy-duty vehicles
    Cholewiński, Maciej
    Pospolita, Wojciech
    Bloński, Dominik
    [J]. Archives of Transport, 2016, 39 (03) : 7 - 19
  • [8] Simulating the effect of step 2 general purpose heat source power attenuation on radioisotope thermophotovoltaic system
    Huang, Bohui
    Zhang, Shouhao
    Wang, Zhiyang
    Bian, Yubo
    He, Baizhen
    Wang, Hucheng
    Shao, Jianxiong
    Yang, Aixiang
    Chen, Ximeng
    Tang, Liangliang
    Qiu, Xiyu
    Zhu, Dingjun
    [J]. APPLIED THERMAL ENGINEERING, 2024, 244
  • [9] Design, analyses, and fabrication procedure of AMTEC cell, test assembly, and radioisotope power system for outer-planet missions
    Schock, A
    Noravian, H
    Or, C
    Kumar, V
    [J]. ACTA ASTRONAUTICA, 2002, 50 (08) : 471 - 510
  • [10] Thermodynamic and thermoeconomic analyses of a new dual-loop organic Rankine - Generator absorber heat exchanger power and cooling cogeneration system
    Pourpasha, Hadi
    Mohammadfam, Yaghoub
    Khani, Leyla
    Mohammadpourfard, Mousa
    Heris, Saeed Zeinali
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2020, 224