Hyperchaos and Coexisting Attractors in a Modified van der Pol-Duffing Oscillator

被引:19
|
作者
Rajagopal, Karthikeyan [1 ,2 ,3 ]
Khalaf, Abdul Jalil M. [4 ]
Wei, Zhouchao [5 ]
Viet-Thanh Pham [6 ]
Alsaedi, Ahmed [7 ]
Hayat, Tasawar [7 ,8 ]
机构
[1] Def Univ, Ctr Nonlinear Dynam, Bishoftu, Ethiopia
[2] Def Univ, Inst Res & Dev, Bishoftu, Ethiopia
[3] Mekelle Univ, Inst Energy, Mekelle, Ethiopia
[4] Minist Higher Educ & Sci Res, Baghdad, Iraq
[5] China Univ Geosci, Sch Math & Phys, Wuhan 430074, Hubei, Peoples R China
[6] Ton Due Thang Univ, Fac Elect & Elect Engn, Nonlinear Syst & Applicat, Ho Chi Minh City, Vietnam
[7] King Abdulaziz Univ, NAAM Res Grp, Jeddah, Saudi Arabia
[8] Quaid I Azam Univ, Dept Math, Islamabad 45320, Pakistan
来源
关键词
van der Pol-Duffing oscillator; chaos; bifurcation; multistability; FPGA; HIDDEN ATTRACTORS; CHAOTIC ATTRACTOR; EXTREME MULTISTABILITY; FPGA IMPLEMENTATION; HYPERJERK SYSTEM; DYNAMICS; SYNCHRONIZATION; REALIZATION; DESIGN; FORM;
D O I
10.1142/S0218127419500676
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with a new modified hyperchaotic van der Pol-Duffing (MVPD) snap oscillator. Various dynamical properties of the proposed system are investigated with the help of Lyapunov exponents, stability analysis of the equilibrium points and bifurcation plots. The existence of the Hopf bifurcation is established by analyzing the corresponding characteristic equation. It is also proved that the MVPD oscillator shows multistability with coexisting attractors. Various numerical simulations are conducted and presented to show the dynamical behavior of the MVPD system. To show that the system is hardware realizable, we derive the discrete model of the MVPD system using the Euler's method and using the hardware-software cosimulation, the proposed MVPD system is implemented in Field Programmable Gate Arrays. It is shown that the output of the digital implementations of the MVPD systems matches the numerical analysis.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] MULTISTABILITY AND RARE ATTRACTORS IN VAN DER POL-DUFFING OSCILLATOR
    Chudzik, A.
    Perlikowski, P.
    Stefanski, A.
    Kapitaniak, T
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (07): : 1907 - 1912
  • [2] Bifurcations of the van der Pol-Duffing oscillator
    Pusenjak, R
    [J]. STROJNISKI VESTNIK-JOURNAL OF MECHANICAL ENGINEERING, 2003, 49 (7-8): : 370 - 384
  • [3] Hidden Attractors and Dynamics of a General Autonomous van der Pol-Duffing Oscillator
    Zhao, Huitao
    Lin, Yiping
    Dai, Yunxian
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (06):
  • [4] A van der Pol-Duffing Oscillator with Indefinite Degree
    Chen, Hebai
    Jin, Jie
    Wang, Zhaoxia
    Zhang, Baodong
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2022, 21 (04)
  • [5] On bifurcations and chaos in the Van der Pol-Duffing oscillator
    Bykov, VV
    [J]. RADIOTEKHNIKA I ELEKTRONIKA, 1997, 42 (09): : 1084 - 1096
  • [6] A van der Pol-Duffing Oscillator with Indefinite Degree
    Hebai Chen
    Jie Jin
    Zhaoxia Wang
    Baodong Zhang
    [J]. Qualitative Theory of Dynamical Systems, 2022, 21
  • [7] FREQUENCY RESPONSE OF A VAN DER POL-DUFFING OSCILLATOR
    HAAS, VB
    [J]. PROCEEDINGS OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1971, 59 (02): : 334 - &
  • [8] Rare and hidden attractors in Van der Pol-Duffing oscillators
    S. Brezetskyi
    D. Dudkowski
    T. Kapitaniak
    [J]. The European Physical Journal Special Topics, 2015, 224 : 1459 - 1467
  • [9] Chaos Synchronization of the Modified Van der Pol-Duffing Oscillator of Fractional Order
    Buslowicz, Mikolaj
    Makarewicz, Adam
    [J]. RECENT ADVANCES IN AUTOMATION, ROBOTICS AND MEASURING TECHNIQUES, 2014, 267 : 33 - 43
  • [10] Rare and hidden attractors in Van der Pol-Duffing oscillators
    Brezetskyi, S.
    Dudkowski, D.
    Kapitaniak, T.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2015, 224 (08): : 1459 - 1467