Non-perturbative quantum geometry

被引:18
|
作者
Krefl, Daniel [1 ]
机构
[1] SNU, Ctr Theoret Phys, Seoul, South Korea
来源
基金
新加坡国家研究基金会;
关键词
Matrix Models; Topological Strings; MULTI-INSTANTONS;
D O I
10.1007/JHEP02(2014)084
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The beta-ensemble with cubic potential can be used to study a quantum particle in a double-well potential with symmetry breaking term. The quantum mechanical perturbative energy arises from the ensemble free energy in a novel large N limit. A relation between the generating functions of the exact non-perturbative energy, similar in spirit to the one of Dunne- nsal, is found. The exact quantization condition of Zinn-Justin and Jentschura is equivalent to the Nekrasov-Shatashvili quantization condition on the level of the ensemble. Refined topological string theory in the Nekrasov-Shatashvili limit arises as a large N limit of quantum mechanics.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Non-perturbative quantum geometry
    Daniel Krefl
    Journal of High Energy Physics, 2014
  • [2] Non-perturbative quantum geometry II
    Daniel Krefl
    Journal of High Energy Physics, 2014
  • [3] Non-perturbative quantum geometry II
    Krefl, Daniel
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (12):
  • [4] Non-perturbative quantum geometry III
    Daniel Krefl
    Journal of High Energy Physics, 2016
  • [5] Non-perturbative quantum geometry III
    Kreft, Daniel
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (08):
  • [6] Non-perturbative Quantum Mechanics from Non-perturbative Strings
    Codesido, Santiago
    Marino, Marcos
    Schiappa, Ricardo
    ANNALES HENRI POINCARE, 2019, 20 (02): : 543 - 603
  • [7] Non-perturbative Quantum Mechanics from Non-perturbative Strings
    Santiago Codesido
    Marcos Mariño
    Ricardo Schiappa
    Annales Henri Poincaré, 2019, 20 : 543 - 603
  • [8] Non-perturbative Quantum Field Theory and the Geometry of Functional Spaces
    Aastrup, Johannes
    Grimstrup, Jesper Moller
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2021, 69 (10):
  • [9] NON-PERTURBATIVE QUANTUM FIELD THEORY
    BARRY M. MCCOY
    吴大峻
    Science China Mathematics, 1979, (09) : 1021 - 1032
  • [10] Non-perturbative correction on the black hole geometry
    Pourhassan, Behnam
    Farahani, Hoda
    Kazemian, Farideh
    Sakalli, Izzet
    Upadhyay, Sudhaker
    Singh, Dharm Veer
    PHYSICS OF THE DARK UNIVERSE, 2024, 44