DYNAMIC BACKGROUND MODELING AND SUBTRACTION USING SPATIO-TEMPORAL LOCAL BINARY PATTERNS

被引:72
|
作者
Zhang, Shengping [1 ]
Yao, Hongxun [1 ]
Liu, Shaohui [1 ]
机构
[1] Harbin Inst Technol, Sch Engn & Comp Sci, Harbin 150001, Peoples R China
关键词
Background modeling; object detection; spatio-temporal features; local binary patterns;
D O I
10.1109/ICIP.2008.4712065
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traditional background modeling and subtraction methods shave a strong assumption that the scenes are of static structures with limited perturbation. These methods will perform poorly in dynamic scenes. In this paper, we present a solution to this problem. We first extend the local binary patterns from spatial domain to spatio-temporal domain, and present a new online dynamic texture extraction operator, named spatio-temporal local binary patterns (STLBP). Then we present a novel and effective method for dynamic background modeling and subtraction using STLBP. In the proposed method, each pixel is modeled as a group of STLBP dynamic texture histograms which combine spatial texture and temporal motion information together. Compared with traditional methods, experimental results show that the proposed method adapts quickly to the changes of the dynamic background. It achieves accurate detection of moving objects and suppresses most of the false detections for dynamic changes of nature scenes.
引用
收藏
页码:1556 / 1559
页数:4
相关论文
共 50 条
  • [1] Spatio-Temporal Saliency Detection in Dynamic Scenes using Local Binary Patterns
    Muddamsetty, Satya M.
    Sidibe, Desire
    Tremeau, Alain
    Meriaudeau, Fabrice
    [J]. 2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 2353 - 2358
  • [2] Complex Background Subtraction by Pursuing Dynamic Spatio-Temporal Models
    Lin, Liang
    Xu, Yuanlu
    Liang, Xiaodan
    Lai, Jianhuang
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (07) : 3191 - 3202
  • [3] Dynamic background subtraction method based on spatio-temporal classification
    Li, Xiying
    Li, Guoming
    Jiang, Qianyin
    [J]. IET COMPUTER VISION, 2018, 12 (04) : 492 - 501
  • [4] Improved background modeling of video sequences using spatio-temporal extension of fuzzy local binary pattern
    Sefidmazgi, Akram Norouzi
    Nahvi, Manoochehr
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (12) : 17287 - 17316
  • [5] Improved background modeling of video sequences using spatio-temporal extension of fuzzy local binary pattern
    Akram Norouzi Sefidmazgi
    Manoochehr Nahvi
    [J]. Multimedia Tools and Applications, 2019, 78 : 17287 - 17316
  • [6] Background Subtraction Using Spatio-Temporal Group Sparsity Recovery
    Liu, Xin
    Yao, Jiawen
    Hong, Xiaopeng
    Huang, Xiaohua
    Zhou, Ziheng
    Qi, Chun
    Zhao, Guoying
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2018, 28 (08) : 1737 - 1751
  • [7] Spatio-temporal context for codebook-based dynamic background subtraction
    Wu, Mingjun
    Peng, Xianrong
    [J]. AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2010, 64 (08) : 739 - 747
  • [8] Background subtraction with adaptive spatio-temporal neighborhood analysis
    Cristani, Marco
    Murino, Vittorio
    [J]. VISAPP 2008: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS, VOL 2, 2008, : 484 - 489
  • [9] A stepwise background subtraction by fusion spatio-temporal information
    [J]. Chu, J. (chujun99602@163.com), 1600, Science Press (40):
  • [10] Improving Background Subtraction using Local Binary Similarity Patterns
    St-Charles, Pierre-Luc
    Bilodeau, Guillaume-Alexandre
    [J]. 2014 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2014, : 509 - 515