3D Hyper-dense Connected Convolutional Neural Network for Brain Tumor Segmentation

被引:15
|
作者
Qamar, Saqib [1 ]
Jin, Hai [1 ]
Zheng, Ran [1 ]
Ahmad, Parvez [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Comp Sci & Technol, Serv Comp Technol & Syst Lab, Cluster & Grid Comp Lab,Big Data Technol & Syst L, Wuhan 430074, Hubei, Peoples R China
关键词
3D FCN; Brain tumor segmentation; Densely connected block; Deep learning;
D O I
10.1109/SKG.2018.00024
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Glioma is one of the most widespread and intense forms of primary brain tumors. Accurate subcortical brain segmentation is essential in the evaluation of gliomas which helps to monitor the growth of gliomas and assists in the assessment of medication effects. Manual segmentation is needed a lot of human resources on Magnetic Resonance Imaging (MRI) data. Deep learning methods have become a powerful tool to learn features automatically in medical imaging applications including brain tissue segmentation, liver segmentation, and brain tumor segmentation. The shape of gliomas, structure, and location are different among individual patients, and it is a challenge to developing a model. In this paper, 3D hyper-dense Convolutional Neural Network(CNN) is developed to segment tumors, in which it captures the global and local contextual information from two scales of global and local patches along with the two scales of receptive field. Densely connected blocks are used to exploit the benefit of a CNN to boost the model segmentation performance in Enhancing Tumor (ET), Non Enhancing Tumor (NET), and Peritumoral Edema (PE). This dense architecture adopts 3D Fully Convolutional Network (FCN) architecture that is used for end-to-end volumetric prediction. The dense connectivity can offer a chance of deep supervision and improve gradient flow information in the learning process. The network is trained hierarchically based on global and local patches. In this scenario, the both patches are processed in their separate path, and dense connections happen not only between same path layers but also between different path layers. Our approach is validated on the BraTS 2018 dataset with the dice-score of 0.87, 0.81 and 0.84 for the complete tumor, enhancing tumor, and tumor core respectively. These outcomes are very close to the reported state-of-the-art results, and our approach is preferable to present 3D-based approaches when it comes to compactness, time and parameter efficiency on MRI brain tumor segmentation.
引用
收藏
页码:123 / 130
页数:8
相关论文
共 50 条
  • [1] ISOINTENSE INFANT BRAIN SEGMENTATION WITH A HYPER-DENSE CONNECTED CONVOLUTIONAL NEURAL NETWORK
    Dolz, Jose
    Ben Ayed, Ismail
    Yuan, Jing
    Desrosiers, Christian
    [J]. 2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 616 - 620
  • [2] Brain Tumor Segmentation Using 3D Convolutional Neural Network
    Liang, Kaisheng
    Lu, Wenlian
    [J]. BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT II, 2020, 11993 : 199 - 207
  • [3] Multimodal brain tumour segmentation using densely connected 3D convolutional neural network
    Ghaffari, Mina
    Sowmya, Arcot
    Oliver, Ruth
    Hamey, Len
    [J]. 2019 DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2019, : 420 - 424
  • [4] An Ensemble of 2D Convolutional Neural Network for 3D Brain Tumor Segmentation
    Pawar, Kamlesh
    Chen, Zhaolin
    Shah, N. Jon
    Egan, Gary F.
    [J]. BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT I, 2020, 11992 : 359 - 367
  • [5] Brain Tumor Segmentation Using Dense Fully Convolutional Neural Network
    Shaikh, Mazhar
    Anand, Ganesh
    Acharya, Gagan
    Amrutkar, Abhijit
    Alex, Varghese
    Krishnamurthi, Ganapathy
    [J]. BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2017, 2018, 10670 : 309 - 319
  • [6] Multipath Densely Connected Convolutional Neural Network for Brain Tumor Segmentation
    Liu, Cong
    Si, Weixin
    Qian, Yinling
    Liao, Xiangyun
    Wang, Qiong
    Guo, Yong
    Heng, Pheng-Ann
    [J]. BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT I, 2019, 11383 : 81 - 91
  • [7] Automated Segmentation of Colorectal Tumor in 3D MRI Using 3D Multiscale Densely Connected Convolutional Neural Network
    Soomro, Mumtaz Hussain
    Coppotelli, Matteo
    Conforto, Silvia
    Schmid, Maurizio
    Giunta, Gaetano
    Del Secco, Lorenzo
    Neri, Emanuele
    Caruso, Damiano
    Rengo, Marco
    Laghi, Andrea
    [J]. JOURNAL OF HEALTHCARE ENGINEERING, 2019, 2019
  • [8] Brain tumor segmentation via C-dense convolutional neural network
    Wang, Ye
    Peng, Jialin
    Jia, Zhongdao
    [J]. PROGRESS IN ARTIFICIAL INTELLIGENCE, 2021, 10 (02) : 147 - 156
  • [9] Brain tumor segmentation via C-dense convolutional neural network
    Ye Wang
    Jialin Peng
    Zhongdao Jia
    [J]. Progress in Artificial Intelligence, 2021, 10 : 147 - 156
  • [10] Brain Tumor Classification Using 3D Convolutional Neural Network
    Pei, Linmin
    Vidyaratne, Lasitha
    Hsu, Wei-Wen
    Rahman, Md Monibor
    Iftekharuddin, Khan M.
    [J]. BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT II, 2020, 11993 : 335 - 342