Heat Flow Pattern and Thermal Resistance Modeling of Anisotropic Heat Spreaders

被引:7
|
作者
Falakzaadeh, F. [1 ]
Mehryar, R. [1 ]
机构
[1] Shiraz Univ Technol, Dept Mech & Aerosp Engn, POB 71555-313, Shiraz, Iran
关键词
Anisotropic heat spreaders; spreading thickness; thermal resistance;
D O I
10.1007/s11664-016-4854-1
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To ensure safe operating temperatures of the ever smaller heat generating electronic devices, drastic measures should be taken. Heat spreaders are used to increase surface area, by spreading the heat without necessarily transferring it to the ambient in the first place. The heat flow pattern is investigated in heat spreaders and the fundamental differences regarding how heat conducts in different materials is addressed. Isotropic materials are compared with anisotropic ones having a specifically higher in-plane thermal conductivity than through plane direction. Thermal resistance models are proposed for anisotropic and isotropic heat spreaders in compliance with the order of magnitude of dimensions used in electronics packaging. After establishing thermal resistance models for both the isotropic and anisotropic cases, numerical results are used to find a correlation for predicting thermal resistance in anisotropic heat spreaders with high anisotropy ratios.
引用
收藏
页码:64 / 72
页数:9
相关论文
共 50 条
  • [1] Heat Flow Pattern and Thermal Resistance Modeling of Anisotropic Heat Spreaders
    F. Falakzaadeh
    R. Mehryar
    Journal of Electronic Materials, 2017, 46 : 64 - 72
  • [2] Performance of Isotropic and Anisotropic Heat Spreaders
    D.D.L. Chung
    Yoshihiro Takizawa
    Journal of Electronic Materials, 2012, 41 : 2580 - 2587
  • [3] Performance of Isotropic and Anisotropic Heat Spreaders
    Chung, D. D. L.
    Takizawa, Yoshihiro
    JOURNAL OF ELECTRONIC MATERIALS, 2012, 41 (09) : 2580 - 2587
  • [4] A COMPARISON OF METHODS TO MEASURE THE THERMAL DIFFUSIVITY OF ANISOTROPIC GRAPHITE HEAT SPREADERS
    Beyerle, Rick
    Smalc, Martin
    Wayne, Ryan
    Reynolds, R. A., III
    PROCEEDINGS OF THE ASME INTERNATIONAL TECHNICAL CONFERENCE AND EXHIBITION ON PACKAGING AND INTEGRATION OF ELECTRONIC AND PHOTONIC MICROSYSTEMS, 2013, VOL 2, 2014,
  • [5] Analysis of thermal resistance of orthotropic materials used for heat spreaders
    Lam, TT
    Fischer, WD
    Cabral, PS
    JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 2004, 18 (02) : 203 - 208
  • [6] Thermal Modeling of Vapor Chamber Heat Spreaders and Model Validation
    Parida, Pritish R.
    Marston, Ken
    Drummond, Kevin
    Campbell, Levi
    Saito, Yuji
    Phan, Thanh Long
    Wu, Xiao Ping
    Wuttijumnong, Vijit
    PROCEEDINGS OF THE NINETEENTH INTERSOCIETY CONFERENCE ON THERMAL AND THERMOMECHANICAL PHENOMENA IN ELECTRONIC SYSTEMS (ITHERM 2020), 2020, : 134 - 142
  • [7] OPTIMUM THICKNESS OF CIRCULAR ANISOTROPIC HEAT SPREADERS
    Falakzadeh, F.
    Mehryar, R.
    JOURNAL OF ENGINEERING PHYSICS AND THERMOPHYSICS, 2022, 95 (03) : 662 - 672
  • [8] Optimum Thickness of Circular Anisotropic Heat Spreaders
    F. Falakzadeh
    R. Mehryar
    Journal of Engineering Physics and Thermophysics, 2022, 95 : 662 - 672
  • [9] An analytical solution of thermal resistance of cubic heat spreaders for electronic cooling
    Feng, TQ
    Xu, JL
    APPLIED THERMAL ENGINEERING, 2004, 24 (2-3) : 323 - 337
  • [10] Manipulating thermal fields with inhomogeneous heat spreaders
    Russell, Eleanor R.
    Assier, Raphael C.
    Parnell, William J.
    APPLIED MATHEMATICAL MODELLING, 2022, 106 : 225 - 240