The nth-order degenerate breather solution for the Kundu-Eckhaus equation

被引:16
|
作者
Qiu, Deqin [1 ,2 ]
Cheng, Wenguang [3 ,4 ]
机构
[1] China Univ Min & Technol, Dept Math, Beijing 100083, Peoples R China
[2] Jishou Univ, Coll Math & Stat, Jishou 416000, Peoples R China
[3] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
[4] Yuxi Normal Univ, Dept Math, Yuxi 653100, Peoples R China
基金
中国国家自然科学基金;
关键词
Kundu-Eckhaus equation; Degenerate breather solution; Nontrivial phase shift; NONLINEAR EVOLUTION-EQUATIONS; SMOOTH POSITONS; SOLITON; DYNAMICS;
D O I
10.1016/j.aml.2019.05.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we formulate the compact determinant representation of the formula of nth-order breather solution for the Kundu-Eckhaus (KE) equation. Then, we obtain the formula of the nth-order degenerate breather solution (breather-positon, b-positon for short) for the KE equation by using the Taylor expansion with respect to degenerate eigenvalues lambda(2k-1) -> lambda(1) (k = 1,2, ... , n + 1). B-positon, which is a special kind of breather solution, is recently recognized as a key role being responsible for generating rogue wave. According to the related formula, the exact expression of first-order b-positon is constructed. Furthermore, the dynamics of the first-, second- and third-order b-positons of the KE equation are discussed in detail, and the approximate trajectories and space-dependent 'phase shift' of the collision of b-positons are depicted by explicit expressions, respectively, which may be used to predict where rogue wave occurs. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:13 / 21
页数:9
相关论文
共 50 条
  • [1] Darboux transformation and exact solution to the nonlocal Kundu-Eckhaus equation
    Yang, Yingmin
    Xia, Tiecheng
    Liu, Tongshuai
    [J]. APPLIED MATHEMATICS LETTERS, 2023, 141
  • [2] The Kundu-Eckhaus equation and its discretizations
    Levi, Decio
    Scimiterna, Christian
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (46)
  • [3] The Darboux transformation of the Kundu-Eckhaus equation
    Qiu, Deqin
    He, Jingsong
    Zhang, Yongshuai
    Porsezian, K.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 471 (2180):
  • [4] Rogue wave spectra of the Kundu-Eckhaus equation
    Bayindir, Cihan
    [J]. PHYSICAL REVIEW E, 2016, 93 (06)
  • [5] Higher-order rogue wave solutions of the Kundu-Eckhaus equation
    Wang, Xin
    Yang, Bo
    Chen, Yong
    Yang, Yunqing
    [J]. PHYSICA SCRIPTA, 2014, 89 (09)
  • [6] On traveling wave solutions of the Kundu-Eckhaus equation
    Kudryashov, Nikolay A.
    [J]. OPTIK, 2020, 224
  • [7] Optical solitons in birefringent fibers with Kundu-Eckhaus equation
    Biswas, Anjan
    Arshed, Saima
    Ekici, Mehmet
    Zhou, Qin
    Moshokoa, Seithuti P.
    Alfiras, Mohanad
    Belic, Milivoj
    [J]. OPTIK, 2019, 178 : 550 - 556
  • [8] Asymptotic analysis of high-order solitons of an equivalent Kundu-Eckhaus equation
    Yan, Xue-Wei
    Chen, Yong
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024,
  • [9] Optical solitons and conservation law of Kundu-Eckhaus equation
    Mirzazadeh, Mohammad
    Yildirim, Yakup
    Yasar, Emrullah
    Triki, Houria
    Zhou, Qin
    Moshokoa, Seithuti P.
    Ullah, Malik Zaka
    Seadawy, Aly R.
    Biswas, Anjan
    Belic, Milivoj
    [J]. OPTIK, 2018, 154 : 551 - 557
  • [10] VECTOR FORM OF KUNDU-ECKHAUS EQUATION AND ITS SIMPLEST SOLUTIONS
    Smirnov, A. O.
    Caplieva, A. A.
    [J]. UFA MATHEMATICAL JOURNAL, 2023, 15 (03): : 148 - 163