A Hybrid Artificial Intelligence Model for Detecting Keratoconus

被引:1
|
作者
Alyasseri, Zaid Abdi Alkareem [1 ,2 ,3 ]
Al-Timemy, Ali H. [4 ]
Abasi, Ammar Kamal [5 ]
Lavric, Alexandru [6 ]
Mohammed, Husam Jasim [7 ]
Takahashi, Hidenori [8 ]
Milhomens Filho, Jose Arthur [9 ]
Campos, Mauro [9 ]
Hazarbassanov, Rossen M. [9 ]
Yousefi, Siamak [10 ,11 ]
机构
[1] Univ Kufa, Informat Technol Res & Dev Ctr ITRDC, Najaf, Iraq
[2] Univ Tenaga Nas, Natl Energy Ctr, Jalan Ikram Uniten, Kajang 43000, Selangor, Malaysia
[3] Univ Warith Al Anbiyaa, Coll Engn, Karbala, Iraq
[4] Univ Baghdad, Khwarizmi Coll Engn, Biomed Engn Dept, AL, Baghdad, Iraq
[5] Mohamed Bin Zayed Univ Artificial Intelligence MBZ, Machine Learning Dept, Abu Dhabi, U Arab Emirates
[6] Stefan cel Mare Univ Suceava, Elect & Automat Dept, Comp, Suceava 720229, Romania
[7] Imam Jaafar Al Sadiq Univ, Coll Adm & Financial Sci, Dept Business Adm, Baghdad, Iraq
[8] Jichi Med Univ, Dept Ophthalmol, Tochigi 3290498, Japan
[9] Univ Fed Sao Paulo, Paulista Med Sch, Dept Ophthalmol & Visual Sci, BR-04021001 Sao Paulo, Brazil
[10] Univ Tennessee Hlth Sci Ctr, Dept Ophthalmol, Memphis, TN 38163 USA
[11] Univ Tennessee Hlth Sci Ctr, Dept Genet, Genom & Informat, Memphis, TN 38163 USA
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 24期
关键词
keratoconus detection; feature extraction; machine learning; k-means; flower pollination algorithm; DIABETIC-RETINOPATHY; CORNEAL-VOLUME; CLASSIFICATION; TOPOGRAPHY; PACHYMETRY; SEVERITY; POPULATIONS; VALIDATION; ELEVATION;
D O I
10.3390/app122412979
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Machine learning models have recently provided great promise in diagnosis of several ophthalmic disorders, including keratoconus (KCN). Keratoconus, a noninflammatory ectatic corneal disorder characterized by progressive cornea thinning, is challenging to detect as signs may be subtle. Several machine learning models have been proposed to detect KCN, however most of the models are supervised and thus require large well-annotated data. This paper proposes a new unsupervised model to detect KCN, based on adapted flower pollination algorithm (FPA) and the k-means algorithm. We will evaluate the proposed models using corneal data collected from 5430 eyes at different stages of KCN severity (1520 healthy, 331 KCN1, 1319 KCN2, 1699 KCN3 and 579 KCN4) from Department of Ophthalmology and Visual Sciences, Paulista Medical School, Federal University of Sao Paulo, Sao Paulo in Brazil and 1531 eyes (Healthy = 400, KCN1 = 378, KCN2 = 285, KCN3 = 200, KCN4 = 88) from Department of Ophthalmology, Jichi Medical University, Tochigi in Japan and used several accuracy metrics including Precision, Recall, F-Score, and Purity. We compared the proposed method with three other standard unsupervised algorithms including k-means, Kmedoids, and Spectral cluster. Based on two independent datasets, the proposed model outperformed the other algorithms, and thus could provide improved identification of the corneal status of the patients with keratoconus.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Artificial intelligence for detecting keratoconus
    Vandevenne, Magali M. S.
    Favuzza, Eleonora
    Veta, Mitko
    Lucenteforte, Ersilia
    Berendschot, Tos T. J. M.
    Mencucci, Rita
    Nuijts, Rudy Mma
    Virgili, Gianni
    Dickman, Mor M.
    [J]. COCHRANE DATABASE OF SYSTEMATIC REVIEWS, 2023, (11):
  • [2] Detecting keratoconus on two different populations using an unsupervised hybrid artificial intelligence model
    Hazarbassanov, Rossen M.
    Alkareem Alyasseri, Zaid Abdi
    Al-Timemy, Ali
    Lavric, Alexandru
    Abasid, Ammar Kamal
    Takahashi, Hidenori
    Milhomens Filho, Jose Arthur
    Campos, Mauro
    Yousefi, Siamak
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2022, 63 (07)
  • [3] Artificial Intelligence-Based Diagnostic Model for Detecting Keratoconus Using Videos of Corneal Force Deformation
    Tan, Zuoping
    Chen, Xuan
    Li, Kangsheng
    Liu, Yan
    Cao, Huazheng
    Li, Jing
    Jhanji, Vishal
    Zou, Haohan
    Liu, Fenglian
    Wang, Riwei
    Wang, Yan
    [J]. TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2022, 11 (09):
  • [4] A hybrid model approach to artificial intelligence
    Deeb, K
    Jimenez, R
    [J]. INTELLIGENT INFORMATION PROCESSING AND WEB MINING, 2003, : 511 - 520
  • [5] Cochrane corner: artificial intelligence for keratoconus
    Tiong, Ethan Wen Wei
    Liu, Su-Hsun
    Ting, Darren S. J.
    [J]. EYE, 2024,
  • [6] The Future of Keratoconus Screening with Artificial Intelligence
    Klyce, Stephen D.
    [J]. OPHTHALMOLOGY, 2018, 125 (12) : 1872 - 1873
  • [7] An Explainable Artificial Intelligence Model for Detecting Xenophobic Tweets
    Perez-Landa, Gabriel Ichcanziho
    Loyola-Gonzalez, Octavio
    Medina-Perez, Miguel Angel
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (22):
  • [8] A hybrid artificial intelligence model for river flow forecasting
    Fajardo Toro, Carlos H.
    Gomez Meire, Silvana
    Galvez, Juan F.
    Fdez-Riverola, Florentino
    [J]. APPLIED SOFT COMPUTING, 2013, 13 (08) : 3449 - 3458
  • [9] A Hybrid Artificial Intelligence Model for Skin Cancer Diagnosis
    Lakshmi, V. Vidya
    Jasmine, J. S. Leena
    [J]. COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2021, 37 (02): : 233 - 245
  • [10] Artificial intelligence hybrid model applied to wastewater treatment
    Rodriguez Sarabia, Yanet
    Cabrera Bermudez, Xiomara
    Falcon Martinez, Rafael Jesus
    Herrera Rodriguez, Zenaida
    Contreras Moya, Ana M.
    Garcia Lorenzo, Maria Matilde
    [J]. INTERNATIONAL E-CONFERENCE ON COMPUTER SCIENCE 2005, 2005, 2 : 132 - 135