Well-posedness and global existence for a generalized Degasperis-Procesi equation

被引:24
|
作者
Li, Jinlu [1 ]
Yin, Zhaoyang [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
[2] Macau Univ Sci & Technol, Fac Informat Technol, Macau, Peoples R China
关键词
A generalized Degasperis-Procesi equation; Littlewood-Paley theory; Local well-posedness; Blow-up criterion; Global existence; SHALLOW-WATER EQUATION; CAUCHY-PROBLEM; WEAK SOLUTIONS; INTEGRABLE EQUATION; WAVE SOLUTIONS; TRAJECTORIES; BREAKING;
D O I
10.1016/j.nonrwa.2015.09.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We first establish the local existence and uniqueness of strong solutions for the Cauchy problem of a generalized Degasperis-Procesi equation in nonhomogeneous Besov spaces by using the Littlewood-Paley theory. Then, we prove the solution depends continuously on the initial data. Finally, we derive a blow-up criterion and present a global existence result for the equation. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:72 / 90
页数:19
相关论文
共 50 条
  • [1] On the well-posedness of the Degasperis-Procesi equation
    Coclite, GM
    Karlsen, KH
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 233 (01) : 60 - 91
  • [2] ON WELL-POSEDNESS OF THE DEGASPERIS-PROCESI EQUATION
    Himonas, A. Alexandrou
    Holliman, Curtis
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 31 (02): : 469 - 488
  • [3] Probabilistic global well-posedness to the nonlocal Degasperis-Procesi equation
    Chen, Yong
    Zhang, Shuolin
    Gao, Hongjun
    [J]. STATISTICS & PROBABILITY LETTERS, 2024, 206
  • [4] The local well-posedness and stability to a nonlinear generalized Degasperis-Procesi equation
    Jing Chen
    Rui Li
    [J]. Boundary Value Problems, 2015
  • [5] The local well-posedness and stability to a nonlinear generalized Degasperis-Procesi equation
    Chen, Jing
    Li, Rui
    [J]. BOUNDARY VALUE PROBLEMS, 2015,
  • [6] Global well-posedness for the Cauchy problem of the viscous Degasperis-Procesi equation
    Ai, Xiaolian
    Gui, Guilong
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 361 (02) : 457 - 465
  • [7] Well-posedness and blow-up phenomena for the generalized Degasperis-Procesi equation
    Wu, Xinglong
    Yin, Zhaoyang
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (01) : 136 - 146
  • [8] Periodic solutions of the Degasperis-Procesi equation: Well-posedness and asymptotics
    Coclite, G. M.
    Karlsen, K. H.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 268 (05) : 1053 - 1077
  • [9] Well-posedness and continuity properties of the Degasperis-Procesi equation in critical Besov space
    Li, Jinlu
    Yu, Yanghai
    Zhu, Weipeng
    [J]. MONATSHEFTE FUR MATHEMATIK, 2023, 200 (02): : 301 - 313
  • [10] Well-posedness and continuity properties of the Degasperis-Procesi equation in critical Besov space
    Jinlu Li
    Yanghai Yu
    Weipeng Zhu
    [J]. Monatshefte für Mathematik, 2023, 200 : 301 - 313