The main concept of molecular computing depends on DNA self-assembly abilities and on modifying DNA with the help of enzymes during genetic operations. In the typical DNA computing a sequence of operations executed on DNA strings in parallel is called an algorithm, which is also determined by a model of DNA strings. This methodology is similar to the soft hardware specialized architecture driven here by heating, cooling and enzymes, especially polymerases used for copying strings. As it is described in this paper the polymerase Taq properties are changed by modifying its DNA sequence in such a way that polymerase side activities together with peptide chains, responsible for destroying amplified strings, are cut off. Thus, it introduces the next level of molecular computing. The genetic operation execution succession and the given molecule model with designed nucleotide sequences produce computation results and additionally they modify enzymes, which directly influence on the computation process. The information flow begins to circulate. Additionally, such optimized enzymes are more suitable for nanoconstruction, because they have only desired characteristics. The experiment was proposed to confirm the possibilities of the suggested implementation.