Optimization of Genome Engineering Approaches with the CRISPR/Cas9 System

被引:97
|
作者
Li, Kai [1 ]
Wang, Gang [1 ]
Andersen, Troels [2 ]
Zhou, Pingzhu [1 ]
Pu, William T. [1 ,3 ]
机构
[1] Boston Childrens Hosp, Dept Cardiol, Boston, MA 02115 USA
[2] Univ Copenhagen, Copenhagen, Denmark
[3] Harvard Univ, Harvard Stem Cell Inst, Cambridge, MA 02138 USA
来源
PLOS ONE | 2014年 / 9卷 / 08期
基金
美国国家卫生研究院;
关键词
SPECIFICITY; MUTATIONS; CELLS; CAS9; PURIFICATION; NUCLEASES; GENES; MICE;
D O I
10.1371/journal.pone.0105779
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Designer nucleases such as TALENS and Cas9 have opened new opportunities to scarlessly edit the mammalian genome. Here we explored several parameters that influence Cas9-mediated scarless genome editing efficiency in murine embryonic stem cells. Optimization of transfection conditions and enriching for transfected cells are critical for efficiently recovering modified clones. Paired gRNAs and wild-type Cas9 efficiently create programmed deletions, which facilitate identification of targeted clones, while paired gRNAs and the Cas9D10A nickase generated smaller targeted indels with lower chance of off-target mutagenesis. Genome editing is also useful for programmed introduction of exogenous DNA sequences at a target locus. Increasing the length of the homology arms of the homology-directed repair template strongly enhanced targeting efficiency, while increasing the length of the DNA insert reduced it. Together our data provide guidance on optimal design of scarless gene knockout, modification, or knock-in experiments using Cas9 nuclease.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] CRISPR/Cas9 Immune System as a Tool for Genome Engineering
    Magdalena Hryhorowicz
    Daniel Lipiński
    Joanna Zeyland
    Ryszard Słomski
    [J]. Archivum Immunologiae et Therapiae Experimentalis, 2017, 65 : 233 - 240
  • [2] CRISPR/Cas9 Immune System as a Tool for Genome Engineering
    Hryhorowicz, Magdalena
    Lipianki, Daniel
    Zeyland, Joanna
    Slomski, Ryszard
    [J]. ARCHIVUM IMMUNOLOGIAE ET THERAPIAE EXPERIMENTALIS, 2017, 65 (03) : 233 - 240
  • [3] CRISPR–Cas9 System for Genome Engineering of Photosynthetic Microalgae
    Vikas Kumar Patel
    Niraja Soni
    Venkatesh Prasad
    Ajit Sapre
    Santanu Dasgupta
    Bhaskar Bhadra
    [J]. Molecular Biotechnology, 2019, 61 : 541 - 561
  • [4] Improving the efficiency of Cas9/CRISPR genome engineering by optimizing Cas9 delivery
    Pelczar, Pawel
    Oller, Heide
    Kornete, Mara
    Schreiner, Dietmar
    Hermann, Mario
    Jeker, Lukas
    [J]. TRANSGENIC RESEARCH, 2016, 25 (02) : 255 - 256
  • [5] Engineering the Caenorhabditis elegans genome with CRISPR/Cas9
    Waaijers, Selma
    Boxem, Mike
    [J]. METHODS, 2014, 68 (03) : 381 - 388
  • [6] CRISPR/Cas9 mediated genome engineering in Drosophila
    Bassett, Andrew
    Liu, Ji-Long
    [J]. METHODS, 2014, 69 (02) : 128 - 136
  • [7] CRISPR/Cas9 Delivery System Engineering for Genome Editing in Therapeutic Applications
    Cheng, Hao
    Zhang, Feng
    Ding, Yang
    [J]. PHARMACEUTICS, 2021, 13 (10)
  • [8] CRISPR FokI Dead Cas9 System: Principles and Applications in Genome Engineering
    Saifaldeen, Maryam
    Al-Ansari, Dana E.
    Ramotar, Dindial
    Aouida, Mustapha
    [J]. CELLS, 2020, 9 (11)
  • [9] CRISPR/Cas9 genome editing approaches for psychiatric research
    Gutierrez-Rodriguez, Araceli
    Cruz-Fuentes, Carlos S.
    Genis-Mendoza, Alma D.
    Nicolini, Humberto
    [J]. BRAZILIAN JOURNAL OF PSYCHIATRY, 2023, 45 (02) : 137 - 145
  • [10] CRISPR/Cas9 for Human Genome Engineering and Disease Research
    Xiong, Xin
    Chen, Meng
    Lim, Wendell A.
    Zhao, Dehua
    Qi, Lei S.
    [J]. ANNUAL REVIEW OF GENOMICS AND HUMAN GENETICS, VOL 17, 2016, 17 : 131 - 154