The local and semilocal convergence analysis of new Newton-like iteration methods

被引:5
|
作者
Karakaya, Vatan [1 ]
Dogan, Kadri [2 ]
Atalan, Yunus [3 ]
Bouzara, Nour El Houda [4 ]
机构
[1] Yildiz Tech Univ, Dept Math Engn, Davutpasa Campus, Istanbul, Turkey
[2] Artvin Coruh Univ, Dept Comp Engn, City Campus, Artvin, Turkey
[3] Aksaray Univ, Dept Math, Aksaray, Turkey
[4] Univ Sci & Technol, Math Fac, Algiers, Algeria
关键词
Modified Newton algorithm; Picard S hybrid iteration; semilocal convergence; local convergence;
D O I
10.3906/mat-1505-16
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to find new iterative Newton-like schemes inspired by the modified Newton iterative algorithm and prove that these iterations are faster than the existing ones in the literature. We further investigate their behavior and finally illustrate the results by numerical examples.
引用
收藏
页码:735 / 751
页数:17
相关论文
共 50 条
  • [1] Semilocal Convergence Theorem for a Newton-like Method
    Lin, Rong-Fei
    Wu, Qing-Biao
    Chen, Min-Hong
    Liu, Lu
    Dai, Ping-Fei
    [J]. EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2017, 7 (03) : 482 - 494
  • [2] LOCAL CONVERGENCE OF DIFFERENCE NEWTON-LIKE METHODS
    YPMA, TJ
    [J]. MATHEMATICS OF COMPUTATION, 1983, 41 (164) : 527 - 536
  • [3] New improved convergence analysis for Newton-like methods with applications
    Á. Alberto Magreñán
    Ioannis K. Argyros
    Juan Antonio Sicilia
    [J]. Journal of Mathematical Chemistry, 2017, 55 : 1505 - 1520
  • [4] A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space
    Argyros, IK
    [J]. ICNAAM 2004: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2004, 2004, : 24 - 25
  • [5] Local Convergence for Multistep Simplified Newton-like Methods
    Argyros, Ioannis K.
    [J]. PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2008, 40 : 1 - 7
  • [6] New improved convergence analysis for Newton-like methods with applications
    Alberto Magrenan, A.
    Argyros, Ioannis K.
    Antonio Sicilia, Juan
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 2017, 55 (07) : 1505 - 1520
  • [7] Local convergence of Newton-like methods for generalized equations
    Argyros, Ioannis K.
    Hilout, Said
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2008, 197 (02) : 507 - 514
  • [8] A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space
    Argyros, IK
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 298 (02) : 374 - 397
  • [9] Improved convergence analysis for Newton-like methods
    Ángel Alberto Magreñán
    Ioannis K. Argyros
    [J]. Numerical Algorithms, 2016, 71 : 811 - 826
  • [10] Improved convergence analysis for Newton-like methods
    Alberto Magrenan, Angel
    Argyros, Ioannis K.
    [J]. NUMERICAL ALGORITHMS, 2016, 71 (04) : 811 - 826