Light limitation of nutrient-poor lake ecosystems

被引:590
|
作者
Karlsson, Jan [1 ]
Bystrom, Par [2 ]
Ask, Jenny [2 ]
Ask, Per [2 ]
Persson, Lennart [2 ]
Jansson, Mats [2 ]
机构
[1] Umea Univ, Dept Ecol & Environm Sci, CIRC, SE-98107 Abisko, Sweden
[2] Umea Univ, Dept Ecol & Environm Sci, SE-90187 Umea, Sweden
基金
瑞典研究理事会;
关键词
DISSOLVED ORGANIC-CARBON; CLEAR-WATER LAKES; PHOSPHORUS LIMITATION; FOOD WEBS; BIOMASS; EUTROPHICATION; IMPACT; EXPORT;
D O I
10.1038/nature08179
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Productivity denotes the rate of biomass synthesis in ecosystems and is a fundamental characteristic that frames ecosystem function and management. Limitation of productivity by nutrient availability is an established paradigm for lake ecosystems(1-3). Here, we assess the relevance of this paradigm for a majority of the world's small, nutrient-poor lakes, with different concentrations of coloured organic matter(4,5). By comparing small unproductive lakes along a water colour gradient, we show that coloured terrestrial organic matter controls the key process for new biomass synthesis (the benthic primary production) through its effects on light attenuation. We also show that this translates into effects on production and biomass of higher trophic levels (benthic invertebrates and fish). These results are inconsistent with the idea that nutrient supply primarily controls lake productivity, and we propose that a large share of the world's unproductive lakes, within natural variations of organic carbon and nutrient input, are limited by light and not by nutrients. We anticipate that our result will have implications for understanding lake ecosystem function and responses to environmental change. Catchment export of coloured organic matter is sensitive to short-term natural variability and long-term, large-scale changes, driven by climate and different anthropogenic influences(6,7). Consequently, changes in terrestrial carbon cycling will have pronounced effects on most lake ecosystems by mediating changes in light climate and productivity of lakes.
引用
收藏
页码:506 / U80
页数:5
相关论文
共 50 条
  • [1] Light limitation of nutrient-poor lake ecosystems
    Jan Karlsson
    Pär Byström
    Jenny Ask
    Per Ask
    Lennart Persson
    Mats Jansson
    [J]. Nature, 2009, 460 : 506 - 509
  • [2] Characterization of aerobic heterotrophic bacteria in cold and nutrient-poor freshwater ecosystems
    Mackenzie, Roy
    Barros, Javier A.
    Martinez, Miguel A.
    [J]. WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2011, 27 (11): : 2499 - 2504
  • [3] Characterization of aerobic heterotrophic bacteria in cold and nutrient-poor freshwater ecosystems
    Roy Mackenzie
    Javier A. Barros
    Miguel A. Martínez
    [J]. World Journal of Microbiology and Biotechnology, 2011, 27 : 2499 - 2504
  • [4] Effects of Dominant Plant Species on Soils during Succession in Nutrient-poor Ecosystems
    Frank Berendse
    [J]. Biogeochemistry, 1998, 42 : 73 - 88
  • [5] THE EFFECT OF LIGNIN AND NITROGEN ON THE DECOMPOSITION OF LITTER IN NUTRIENT-POOR ECOSYSTEMS - A THEORETICAL APPROACH
    BERENDSE, F
    BERG, B
    BOSATTA, E
    [J]. CANADIAN JOURNAL OF BOTANY-REVUE CANADIENNE DE BOTANIQUE, 1987, 65 (06): : 1116 - 1120
  • [6] Effects of dominant plant species on soils during succession in nutrient-poor ecosystems
    Berendse, F
    [J]. BIOGEOCHEMISTRY, 1998, 42 (1-2) : 73 - 88
  • [7] Light quality determines primary production in nutrient-poor small lakes
    Yukiko Tanabe
    Makoto Hori
    Akiko N. Mizuno
    Takashi Osono
    Masaki Uchida
    Sakae Kudoh
    Masumi Yamamuro
    [J]. Scientific Reports, 9
  • [8] Light quality determines primary production in nutrient-poor small lakes
    Tanabe, Yukiko
    Hori, Makoto
    Mizuno, Akiko N.
    Osono, Takashi
    Uchida, Masaki
    Kudoh, Sakae
    Yamamuro, Masumi
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [9] Reversal of grazing impact on plant species richness in nutrient-poor vs. nutrient-rich ecosystems
    Proulx, M
    Mazumder, A
    [J]. ECOLOGY, 1998, 79 (08) : 2581 - 2592
  • [10] DIEL VARIATION IN OXYGEN PRODUCTION AND UPTAKE IN A MICROBENTHIC LITTORAL COMMUNITY OF A NUTRIENT-POOR LAKE
    HUNDING, C
    [J]. OIKOS, 1973, 24 (03) : 352 - 360