Algebraic analysis of multigrid algorithms

被引:0
|
作者
Pflaum, C [1 ]
机构
[1] Univ Wurzburg, Inst Angew Math & Stat, D-97974 Wurzburg, Germany
关键词
multilevel algorithm; convergence rate; anisotropic elliptic equation; semi-coarsening;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the convergence rate of multilevel algorithms from an algebraic point of view. This requires a detailed analysis of the constant in the strengthened Cauchy-Schwarz inequality between the coarse-grid space and a so-called complementary space. This complementary space may be spanned by standard hierarchical basis functions, prewavelets or generalized prewavelets, Using generalized prewavelets, we are able to derive a constant in the strengthened Cauchy-Schwarz inequality which is less than 0.31 for the L-2 and H-1 bilinear form. This implies a convergence rate less than 0.15. So, we are able to prove fast multilevel convergence. Furthermore, we obtain robust estimations of the convergence rate for a large class of anisotropic ellipic equations, even for some that are not H-1-elliptic. Copyright (C) 1999 John Wiley & Sons, Ltd.
引用
收藏
页码:701 / 728
页数:28
相关论文
共 50 条
  • [1] Scalability analysis for parallel algebraic multigrid algorithms
    Graduate School, China Academy of Engineering Physics, Beijing 100088, China
    不详
    [J]. Jisuan Wuli, 2007, 4 (387-394): : 387 - 394
  • [2] A NOTE ON THE VECTORIZATION OF ALGEBRAIC MULTIGRID ALGORITHMS
    HEMPEL, R
    THOMPSON, C
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 1988, 26 (03) : 245 - 256
  • [3] Efficient algebraic multigrid algorithms and their convergence
    Chang, QS
    Huang, ZH
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002, 24 (02): : 597 - 618
  • [4] Application of Parallel Algebraic Multigrid Algorithms in Geophysics
    Chen Rui
    Tan Han-dong
    [J]. 2012 INTERNATIONAL WORKSHOP ON INFORMATION AND ELECTRONICS ENGINEERING, 2012, 29 : 2710 - 2714
  • [5] An algebraic multigrid approach for image analysis
    Kimmel, R
    Yavneh, I
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 24 (04): : 1218 - 1231
  • [6] THE ANALYSIS OF SMOOTHERS FOR MULTIGRID ALGORITHMS
    BRAMBLE, JH
    PASCIAK, JE
    [J]. MATHEMATICS OF COMPUTATION, 1992, 58 (198) : 467 - 488
  • [7] Algebraic analysis of aggregation-based multigrid
    Napov, Artem
    Notay, Yvan
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2011, 18 (03) : 539 - 564
  • [8] Generalization of algebraic multiscale to algebraic multigrid
    Silvia Ehrmann
    Sebastian Gries
    Marc Alexander Schweitzer
    [J]. Computational Geosciences, 2020, 24 : 683 - 696
  • [9] Generalization of algebraic multiscale to algebraic multigrid
    Ehrmann, Silvia
    Gries, Sebastian
    Schweitzer, Marc Alexander
    [J]. COMPUTATIONAL GEOSCIENCES, 2020, 24 (02) : 683 - 696
  • [10] On the algebraic multigrid method
    Chang, QS
    Wong, YS
    Fu, HQ
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 125 (02) : 279 - 292