Motion Deblurring of Faces

被引:22
|
作者
Chrysos, Grigorios G. [1 ]
Favaro, Paolo [2 ]
Zafeiriou, Stefanos [1 ]
机构
[1] Imperial Coll London, Dept Comp, 180 Queens Gate, London SW7 2AZ, England
[2] Univ Bern, Dept Informat, Neubruckstr 10, CH-3012 Bern, Switzerland
关键词
Learning motion deblurring; Face deblurring; Data-driven networks; IMAGE; IDENTIFICATION; RESTORATION;
D O I
10.1007/s11263-018-1138-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Face analysis lies at the heart of computer vision with remarkable progress in the past decades. Face recognition and tracking are tackled by building invariance to fundamental modes of variation such as illumination, 3D pose. A much less standing mode of variation is motion deblurring, which however presents substantial challenges in face analysis. Recent approaches either make oversimplifying assumptions, e.g. in cases of joint optimization with other tasks, or fail to preserve the highly structured shape/identity information. We introduce a two-step architecture tailored to the challenges of motion deblurring: the first step restores the low frequencies; the second restores the high frequencies, while ensuring that the outputs span the natural images manifold. Both steps are implemented with a supervised data-driven method; to train those we devise a method for creating realistic motion blur by averaging a variable number of frames. The averaged images originate from the 2MF2 dataset with 19 million facial frames, which we introduce for the task. Considering deblurring as an intermediate step, we conduct a thorough experimentation on high-level face analysis tasks, i.e. landmark localization and face verification, on blurred images. The experimental evaluation demonstrates the superiority of our method.
引用
收藏
页码:801 / 823
页数:23
相关论文
共 50 条
  • [1] Motion Deblurring of Faces
    Grigorios G. Chrysos
    Paolo Favaro
    Stefanos Zafeiriou
    International Journal of Computer Vision, 2019, 127 : 801 - 823
  • [2] Motion Deblurring of Faces
    Anand, Pooja
    David, Sumam S.
    Sudeep, K. S.
    2020 5TH IEEE INTERNATIONAL CONFERENCE ON RECENT TRENDS ON ELECTRONICS, INFORMATION, COMMUNICATION & TECHNOLOGY (RTEICT-2020), 2020, : 78 - 82
  • [3] Forward Motion Deblurring
    Zheng, Shicheng
    Xu, Li
    Jia, Jiaya
    2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, : 1465 - 1472
  • [4] Fast Motion Deblurring
    Cho, Sunghyun
    Lee, Seungyong
    ACM TRANSACTIONS ON GRAPHICS, 2009, 28 (05): : 1 - 8
  • [5] Motion Deblurring in the Wild
    Noroozi, Mehdi
    Chandramouli, Paramanand
    Favaro, Paolo
    PATTERN RECOGNITION (GCPR 2017), 2017, 10496 : 65 - 77
  • [6] Motion-based motion deblurring
    Ben-Ezra, M
    Nayar, SK
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (06) : 689 - 698
  • [7] Learning Blind Motion Deblurring
    Wieschollek, Patrick
    Hirsch, Michael
    Schoelkopf, Bernhard
    Lensch, Hendrik P. A.
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 231 - 240
  • [8] Rolling Shutter Motion Deblurring
    Su, Shuochen
    Heidrich, Wolfgang
    2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2015, : 1529 - 1537
  • [9] Plenoptic Image Motion Deblurring
    Chandramouli, Paramanand
    Jin, Meiguang
    Perrone, Daniele
    Favaro, Paolo
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (04) : 1723 - 1734
  • [10] Motion deblurring in human vision
    Burr, DC
    Morgan, MJ
    PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1997, 264 (1380) : 431 - 436