On the genus of generalized unit and unitary Cayley graphs of a commutative ring

被引:28
|
作者
Asir, T. [1 ]
Chelvam, T. Tamizh [1 ]
机构
[1] Manonmaniam Sundaranar Univ, Dept Math, Tirunelveli 627012, Tamil Nadu, India
关键词
unit graph; unitary Cayley graph; total graph; genus of a graph; DIVISOR; PLANAR;
D O I
10.1007/s10474-013-0365-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a commutative ring, U(R) be the set of all unit elements of R, G be a multiplicative subgroup of U(R) and S be a non-empty subset of G such that S (-1)={s (-1): saS}a <<...S. In [16], K. Khashyarmanesh et al. defined a graph of R, denoted by I"(R,G,S), which generalizes both unit and unitary Cayley graphs of R. In this paper, we derive several bounds for the genus of I"(R,U(R),S). Moreover, we characterize all commutative Artinian rings R for which the genus of I"(R,U(R),S) is one. This leads to the characterization of all commutative Artinian rings whose unit and unitary Cayley graphs have genus one.
引用
收藏
页码:444 / 458
页数:15
相关论文
共 50 条
  • [1] On the genus of generalized unit and unitary Cayley graphs of a commutative ring
    T. Asir
    T. Tamizh Chelvam
    [J]. Acta Mathematica Hungarica, 2014, 142 : 444 - 458
  • [2] On the Nonorientable Genus of the Generalized Unit and Unitary Cayley Graphs of a Commutative Ring
    Khorsandi, Mahdi Reza
    Musawi, Seyed Reza
    [J]. ALGEBRA COLLOQUIUM, 2022, 29 (01) : 167 - 180
  • [3] A generalization of the unit and unitary Cayley graphs of a commutative ring
    Kazem Khashyarmanesh
    Mahdi Reza Khorsandi
    [J]. Acta Mathematica Hungarica, 2012, 137 : 242 - 253
  • [4] A generalization of the unit and unitary Cayley graphs of a commutative ring
    Khashyarmanesh, K.
    Khorsandi, M. R.
    [J]. ACTA MATHEMATICA HUNGARICA, 2012, 137 (04) : 242 - 253
  • [5] A REFINEMENT OF THE UNIT AND UNITARY CAYLEY GRAPHS OF A FINITE RING
    Naghipour, Ali Reza
    Rezagholibeigi, Meysam
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 53 (04) : 1197 - 1211
  • [6] Generalized unit and unitary Cayley graphs of finite rings
    Chelvam, T. Tamizh
    Kathirvel, S. Anukumar
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2019, 18 (01)
  • [7] FINITE COMMUTATIVE RINGS WHOSE UNITARY CAYLEY GRAPHS HAVE POSITIVE GENUS
    Su, Huadong
    Zhou, Yiqiang
    [J]. JOURNAL OF COMMUTATIVE ALGEBRA, 2018, 10 (02) : 275 - 293
  • [8] Domination in generalized unit and unitary Cayley graphs of finite rings
    T. Tamizh Chelvam
    S. Anukumar Kathirvel
    M. Balamurugan
    [J]. Indian Journal of Pure and Applied Mathematics, 2020, 51 : 533 - 556
  • [9] DOMINATION IN GENERALIZED UNIT AND UNITARY CAYLEY GRAPHS OF FINITE RINGS
    Chelvam, T. Tamizh
    Kathirvel, S. Anukumar
    Balamurugan, M.
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (02): : 533 - 556
  • [10] Cayley Graphs of Ideals in a Commutative Ring
    Afkhami, M.
    Ahmadi, M. R.
    Jahani-Nezhad, R.
    Khashyarmanesh, K.
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2014, 37 (03) : 833 - 843