Fake Banknote Detection Using Multispectral Images

被引:0
|
作者
Kang, K. [1 ]
Lee, C. [1 ]
机构
[1] Yonsei Univ, Dept Elect & Elect Engn, Seoul, South Korea
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With advancement of sensor technologies, it is now possible to manufacture cost-effective multispectral sensors for ATM (automatic teller machine). Using multispectral images, one can better cope with counterfeit banknote problems. In this paper, we propose a counterfeit banknote detection using multispectral images in visual and infrared spectrum. In the proposed method, we divided a banknote into a number of blocks and extracted features from the blocks. To reduce processing time for real-time applications, we applied block selection algorithms. Since ATMs have a limited computing power, we used linear and quadratic classifiers. Experimental results show promising results.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Ethiopian Banknote Recognition and Fake Detection Using Support Vector Machine
    Tessfaw, Engdaw Ayalew
    Ramani, Bhupendra
    Bahiru, Tadesse Kebede
    [J]. PROCEEDINGS OF THE 2018 SECOND INTERNATIONAL CONFERENCE ON INVENTIVE COMMUNICATION AND COMPUTATIONAL TECHNOLOGIES (ICICCT), 2018, : 1354 - 1359
  • [2] Fake Banknote Recognition Using Deep Learning
    Pachon, Cesar G.
    Ballesteros, Dora M.
    Renza, Diego
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (03): : 1 - 20
  • [3] Landmine Detection Using Multispectral Images
    Silva, Jose Silvestre
    Linhas Guerra, Ivo Fernando
    Bioucas-Dias, Jose
    Gasche, Thomas
    [J]. IEEE SENSORS JOURNAL, 2019, 19 (20) : 9341 - 9351
  • [4] Detection of counterfeit banknotes using multispectral images
    Baek, Sangwook
    Choi, Euisun
    Baek, Yoonkil
    Lee, Chulhee
    [J]. DIGITAL SIGNAL PROCESSING, 2018, 78 : 294 - 304
  • [5] Deep Learning-Based Fake-Banknote Detection for the Visually Impaired People Using Visible-Light Images Captured by Smartphone Cameras
    Pham, Tuyen Danh
    Park, Chanhum
    Nguyen, Dat Tien
    Batchuluun, Ganbayar
    Park, Kang Ryoung
    [J]. IEEE ACCESS, 2020, 8 : 63144 - 63161
  • [6] Liveness detection for iris recognition using multispectral images
    Chen, Rui
    Lin, Xirong
    Ding, Tianhuai
    [J]. PATTERN RECOGNITION LETTERS, 2012, 33 (12) : 1513 - 1519
  • [7] Detection of weed species in soybean using multispectral digital images
    Gibson, KD
    Dirks, R
    Medlin, CR
    Johnston, L
    [J]. WEED TECHNOLOGY, 2004, 18 (03) : 742 - 749
  • [8] Pedestrian Detection Using Multispectral Images and a Deep Neural Network
    Nataprawira, Jason
    Gu, Yanlei
    Goncharenko, Igor
    Kamijo, Shunsuke
    [J]. SENSORS, 2021, 21 (07)
  • [9] Detection of streets based on KLT using ikonos multispectral images
    Quintiliano, P
    Santa-Rosa, A
    [J]. 2ND GRSS/ISPRS JOINT WORKSHOP ON REMOTE SENSING AND DATA FUSION OVER URBAN AREAS, 2003, : 186 - 190
  • [10] Detection of Polluted Insulators Using the Information Fusion of Multispectral Images
    Jin, Lijun
    Ai, Jianyong
    Tian, Zhiren
    Zhang, Yingyao
    [J]. IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, 2017, 24 (06) : 3530 - 3538