Granular Space Reduction to a β Multigranulation Fuzzy Rough Set

被引:0
|
作者
Zhou, Junyi [1 ]
Ma, Shaohui [1 ,2 ]
Li, Jianzhen [3 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Econ & Management, Zhenjiang 212003, Peoples R China
[2] Nanjing Univ Sci & Technol, Key Lab Intelligent Percept & Syst High Dimens In, Minist Educ, Nanjing 210094, Jiangsu, Peoples R China
[3] Jiangsu Univ Sci & Technol, Sch Elect & Informat, Zhenjiang 212003, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1155/2014/679037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Multigranulation rough set is an extension of classical rough set, and optimistic multigranulation and pessimistic multigranulation are two special cases of it beta multigranulation rough set is a more generalized multigranulation rough set. In this paper, we first introduce fuzzy rough theory into beta multigranulation rough set to construct a beta multigranulation fuzzy rough set, which can be used to deal with continuous data; then some properties are discussed. Reduction is an important issue of multigranulation rough set, and an algorithm of granular space reduction to beta multigranulation fuzzy rough set for preserving positive region is proposed. To test the algorithm, experiments are taken on five UCI data sets with different values of beta The results show the effectiveness of the proposed algorithm.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] An adjustable multigranulation fuzzy rough set
    Chen, Yan
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2016, 7 (02) : 267 - 274
  • [2] An adjustable multigranulation fuzzy rough set
    Yan Chen
    International Journal of Machine Learning and Cybernetics, 2016, 7 : 267 - 274
  • [3] Dynamic updating multigranulation fuzzy rough set: approximations and reducts
    Hengrong Ju
    Xibei Yang
    Xiaoning Song
    Yunsong Qi
    International Journal of Machine Learning and Cybernetics, 2014, 5 : 981 - 990
  • [4] Dynamic updating multigranulation fuzzy rough set: approximations and reducts
    Ju, Hengrong
    Yang, Xibei
    Song, Xiaoning
    Qi, Yunsong
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2014, 5 (06) : 981 - 990
  • [5] Multigranulation fuzzy probabilistic rough set model on two universes
    Yang, Dan
    Cai, Mingjie
    Li, Qingguo
    Xu, Feng
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2022, 145 : 18 - 35
  • [6] A variable precision multigranulation rough set model and attribute reduction
    Jiayue Chen
    Ping Zhu
    Soft Computing, 2023, 27 : 85 - 106
  • [7] A variable precision multigranulation rough set model and attribute reduction
    Chen, Jiayue
    Zhu, Ping
    SOFT COMPUTING, 2023, 27 (01) : 85 - 106
  • [8] Incomplete Multigranulation Rough Set
    Qian, Yuhua
    Liang, Jiye
    Dang, Chuangyin
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 2010, 40 (02): : 420 - 431
  • [9] L-fuzzy multigranulation rough set based on residuated lattices
    Van Thien Le
    Hu, Bao Qing
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2016, 30 (05) : 2821 - 2831
  • [10] Pessimistic multigranulation rough bipolar fuzzy set and their application in medical diagnosis
    Asad Mubarak
    Muhammad Shabir
    Waqas Mahmood
    Computational and Applied Mathematics, 2023, 42