Unbounded solutions of a class of planar systems

被引:3
|
作者
Yang, XJ [1 ]
机构
[1] Tsing Hua Univ, Dept Math, Beijing 100084, Peoples R China
关键词
periodic solutions; planar system; Fucik spectrum;
D O I
10.1016/j.jmaa.2004.04.044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the unbounded solutions for the following nonlinear planar system: x' = a(+)y(+) - a(-)y(-) + f(t), y' = -b(+)x(+) + b(-)x(-) + g(t), is discussed, where a(+/-), b(+/-) are positive constants satisfying 1/roota(+)b(+) + 1/roota(+)b(-) + 1/roota(-)b(+) + 1/roota(-)b(-) = 4/omega, x(+/-) = max{+/-x, 0}, y(+/-) = max{+/-y, 0}, omega is an element of R+ \ Q, f (t), g(t) is an element of L-infinity[0, 2pi] are 2pi-periodic functions. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:708 / 718
页数:11
相关论文
共 50 条