A comparison of Paley-Wiener theorems for real reductive Lie groups

被引:5
|
作者
van den Ban, Erik P. [1 ]
Souaifi, Sofiane [2 ]
机构
[1] Univ Utrecht, Dept Math, Utrecht, Netherlands
[2] Univ Strasbourg, IRMA, F-67084 Strasbourg, France
关键词
D O I
10.1515/crelle-2012-0105
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we make a detailed comparison between the Paley-Wiener theorems of J. Arthur and P. Delorme for a real reductive Lie group G. We prove that these theorems are equivalent from an a priori point of view. We also give an alternative formulation of the theorems in terms of the Hecke algebra of bi-K-finite distributions supported on K, a maximal compact subgroup of G. Our techniques involve derivatives of holomorphic families of continuous representations and Harish-Chandra modules.
引用
收藏
页码:99 / 149
页数:51
相关论文
共 50 条