Some results related to the Laplacian on vector fields

被引:0
|
作者
Erkekoglu, Fazilet [1 ]
Kupeli, Demir N.
Uebnal, Buelent
机构
[1] Hacettepe Univ, Dept Math, TR-06532 Ankara, Turkey
[2] Bosna Hersek Caddesi, TR-06510 Ankara, Turkey
[3] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2006年 / 69卷 / 1-2期
关键词
Laplacian; conformal vector field; geodesic vector field; eigenvalue equation; Einstein Riemannian manifold; Euclidean sphere;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A characterization of Euclidean spheres out of connected, compact, Einstein Riemannian manifolds of constant scalar curvature is made by a characterization of a vector field with an eigenvalue equation for the Laplacian on vector fields.
引用
收藏
页码:137 / 154
页数:18
相关论文
共 50 条
  • [1] Some results related to the Laplacian on vector fields (vol 69, pg 137, 2006)
    Erkekoglu, F.
    Kupeli, D. N.
    Uenal, B.
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2007, 70 (1-2): : 249 - 249
  • [2] SUBELLIPTICITY OF SOME COMPLEX VECTOR FIELDS RELATED TO THE WITTEN LAPLACIAN
    Li, Wei Xi
    Xu, Chao Jiang
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (7-8) : 2709 - 2724
  • [3] SOME FURTHER RESULTS ON LIFTS OF LINEAR VECTOR FIELDS RELATED TO PRODUCT PRESERVING GAUGE BUNDLE FUNCTORS ON VECTOR BUNDLES
    Ntyam, A.
    Nono, G. F. Wankap
    Ndombol, Bitjong
    [J]. ARCHIVUM MATHEMATICUM, 2016, 52 (03): : 131 - 140
  • [4] The Rough Laplacian and Harmonicity of Hopf Vector Fields
    Domenico Perrone
    [J]. Annals of Global Analysis and Geometry, 2005, 28 : 91 - 106
  • [5] Conformal Vector Fields and Eigenvectors of Laplacian Operator
    Sharief Deshmukh
    [J]. Mathematical Physics, Analysis and Geometry, 2012, 15 : 163 - 172
  • [6] Morse theory for vector fields and the Witten Laplacian
    Enciso, Alberto
    Peralta-Salas, Daniel
    [J]. GEOMETRY AND PHYSICS, 2009, 1130 : 127 - +
  • [7] Laplacian decomposition of vector fields on fractal surfaces
    Abreu-Blaya, R.
    Bory-Reyes, J.
    Moreno-Garcia, T.
    Pena-Pena, D.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2008, 31 (07) : 849 - 857
  • [8] The rough Laplacian and harmonicity of Hopf vector fields
    Perrone, D
    [J]. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2005, 28 (01) : 91 - 106
  • [9] Conformal Vector Fields and Eigenvectors of Laplacian Operator
    Deshmukh, Sharief
    [J]. MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2012, 15 (02) : 163 - 172
  • [10] Some results on almost Ricci solitons and geodesic vector fields
    Sharma R.
    [J]. Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2018, 59 (2): : 289 - 294