Machine Learning Meets Communication Networks: Current Trends and Future Challenges

被引:60
|
作者
Ahmad, Ijaz [1 ]
Shahabuddin, Shariar [2 ]
Malik, Hassan [3 ]
Harjula, Erkki [4 ]
Leppanen, Teemu [5 ]
Loven, Lauri [5 ]
Anttonen, Antti [1 ]
Sodhro, Ali Hassan [6 ]
Mahtab Alam, Muhammad [7 ]
Juntti, Markku [4 ]
Yla-Jaaski, Antti [8 ]
Sauter, Thilo [9 ,10 ]
Gurtov, Andrei [11 ]
Ylianttila, Mika [4 ]
Riekki, Jukka [5 ]
机构
[1] VTT Tech Res Ctr Finland, Espoo 02044, Finland
[2] Nokia, Espoo 02610, Finland
[3] Edge Hill Univ, Comp Sci Dept, Ormskirk L39 4QP, England
[4] Univ Oulu, Ctr Wireless Commun, Oulu 90570, Finland
[5] Univ Oulu, Ctr Ubiquitous Comp, Oulu 90570, Finland
[6] Mid Sweden Univ, Dept Comp & Syst Sci, Ostersund, Sweden
[7] Tallinn Univ Technol, Thomas Johann Seebeck Dept Elect, Tallinn, Estonia
[8] Aalto Univ, Dept Comp Sci, Espoo 02150, Finland
[9] TU Wien, Inst Comp Technol, A-1040 Vienna, Austria
[10] Danube Univ Krems, Dept Integrated Sensor Syst, A-2700 Wiener Neustadt, Austria
[11] Linkoping Univ, Dept Comp & Informat Sci, S-58183 Linkoping, Sweden
来源
IEEE ACCESS | 2020年 / 8卷
基金
芬兰科学院;
关键词
Communication networks; machine learning; physical layer; MAC layer; network layer; SDN; NFV; MEC; security; artificial intelligence (AI); SOFTWARE-DEFINED NETWORKING; RADIO RESOURCE-MANAGEMENT; EDGE COMPUTING ARCHITECTURE; NEURAL-NETWORK; CHANNEL ESTIMATION; WIRELESS NETWORKS; MASSIVE MIMO; INTRUSION-DETECTION; MOBILITY PREDICTION; SWARM INTELLIGENCE;
D O I
10.1109/ACCESS.2020.3041765
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The growing network density and unprecedented increase in network traffic, caused by the massively expanding number of connected devices and online services, require intelligent network operations. Machine Learning (ML) has been applied in this regard in different types of networks and networking technologies to meet the requirements of future communicating devices and services. In this article, we provide a detailed account of current research on the application of ML in communication networks and shed light on future research challenges. Research on the application of ML in communication networks is described in: i) the three layers, i.e., physical, access, and network layers; and ii) novel computing and networking concepts such as Multi-access Edge Computing (MEC), Software Defined Networking (SDN), Network Functions Virtualization (NFV), and a brief overview of ML-based network security. Important future research challenges are identified and presented to help stir further research in key areas in this direction.
引用
收藏
页码:223418 / 223460
页数:43
相关论文
共 50 条
  • [1] When machine learning meets medical world: Current status and future challenges
    Smiti, Abir
    [J]. COMPUTER SCIENCE REVIEW, 2020, 37
  • [2] Machine Learning Applications in Agriculture: Current Trends, Challenges, and Future Perspectives
    Araujo, Sara Oleiro
    Peres, Ricardo Silva
    Ramalho, Jose Cochicho
    Lidon, Fernando
    Barata, Jose
    [J]. AGRONOMY-BASEL, 2023, 13 (12):
  • [3] Machine Learning Assists IoT Localization: A Review of Current Challenges and Future Trends
    Shahbazian, Reza
    Macrina, Giusy
    Scalzo, Edoardo
    Guerriero, Francesca
    [J]. SENSORS, 2023, 23 (07)
  • [4] Machine Learning Meets Computation and Communication Control in Evolving Edge and Cloud: Challenges and Future Perspective
    Rodrigues, Tiago Koketsu
    Suto, Katsuya
    Nishiyama, Hiroki
    Liu, Jiajia
    Kato, Nei
    [J]. IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2020, 22 (01): : 38 - 67
  • [5] Current challenges and future trends in the field of communication architectures for microgrids
    Marzal, Silvia
    Salas, Robert
    Gonzalez-Medina, Raul
    Garcera, Gabriel
    Figueres, Emilio
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 82 : 3610 - 3622
  • [6] A Comprehensive Survey on MIMO Visible Light Communication: Current Research, Machine Learning and Future Trends
    Sejan, Mohammad Abrar Shakil
    Rahman, Md Habibur
    Aziz, Md Abdul
    Kim, Dong-Sun
    You, Young-Hwan
    Song, Hyoung-Kyu
    [J]. SENSORS, 2023, 23 (02)
  • [7] Machine Learning Applications in Manufacturing - Challenges, Trends, and Future Directions
    Manta-Costa, Alexandre
    Araújo, Sara Oleiro
    Peres, Ricardo Silva
    Barata, José
    [J]. IEEE Open Journal of the Industrial Electronics Society, 2024, 5 : 1085 - 1103
  • [8] Neuroevolution in Deep Neural Networks: Current Trends and Future Challenges
    Galván, Edgar
    Mooney, Peter
    [J]. IEEE Transactions on Artificial Intelligence, 2021, 2 (06): : 476 - 493
  • [9] Machine Learning in Malware Analysis: Current Trends and Future Directions
    Altaha, Safa
    Riad, Khaled
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (01) : 1267 - 1279
  • [10] When Machine Learning Meets Wireless Cellular Networks: Deployment, Challenges, and Applications
    Challita, Ursula
    Ryden, Henrik
    Tullberg, Hugo
    [J]. IEEE COMMUNICATIONS MAGAZINE, 2020, 58 (06) : 12 - 18