Geographic Summaries from Crowdsourced Data

被引:1
|
作者
Rizzo, Giuseppe [1 ,2 ]
Falcone, Giacomo [1 ]
Meo, Rosa [1 ]
Pensa, Ruggero G. [1 ]
Troncy, Raphael [2 ]
Milicic, Vuk [2 ]
机构
[1] Univ Turin, Turin, Italy
[2] EURECOM, Sophia Antipolis, France
来源
关键词
D O I
10.1007/978-3-319-11955-7_70
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a research prototype for creating geographic summaries using the whereabouts of Foursquare users. Exploiting the density of the venue types in a particular region, the system adds a layer over any typical cartography geographic maps service, creating a first glance summary over the venues sampled from the Foursquare knowledge base. Each summary is represented by a convex hull. The shape is automatically computed according to the venue densities enclosed in the area. The summary is then labeled with the most prominent category or categories. The prominence is given by the observed venue category density. The prototype provides two outputs: a light-weight representation structured in GeoJSON, and a semantic description using the Open Annotation Ontology. We evaluate the quality of the summaries using the Sum of Squared Errors (SSE) and the Jaccard distance. The system is available at http://geosummly.eurecom.fr.
引用
收藏
页码:477 / 482
页数:6
相关论文
共 50 条
  • [1] Potential of Crowdsourced Traces for Detecting Updates in Authoritative Geographic Data
    Ivanovic, Stefan S.
    Olteanu-Raimond, Ana-Maria
    Mustiere, Sebastien
    Devogele, Thomas
    [J]. GEOSPATIAL TECHNOLOGIES FOR LOCAL AND REGIONAL DEVELOPMENT, 2020, : 205 - 221
  • [2] Animated chorem-based summaries of geographic data streams from sensors in real time
    Bouattou, Zina
    Laurini, Robert
    Belbachir, Hafida
    [J]. JOURNAL OF VISUAL LANGUAGES AND COMPUTING, 2017, 41 : 54 - 69
  • [3] Maximizing benefits from crowdsourced data
    Geoffrey Barbier
    Reza Zafarani
    Huiji Gao
    Gabriel Fung
    Huan Liu
    [J]. Computational and Mathematical Organization Theory, 2012, 18 : 257 - 279
  • [4] Maximizing benefits from crowdsourced data
    Barbier, Geoffrey
    Zafarani, Reza
    Gao, Huiji
    Fung, Gabriel
    Liu, Huan
    [J]. COMPUTATIONAL AND MATHEMATICAL ORGANIZATION THEORY, 2012, 18 (03) : 257 - 279
  • [5] Learning to Predict from Crowdsourced Data
    Bi, Wei
    Wang, Liwei
    Kwok, James T.
    Tu, Zhuowen
    [J]. UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2014, : 82 - 91
  • [6] GENERATING SUMMARIES FROM EVENT DATA
    MAYBURY, MT
    [J]. INFORMATION PROCESSING & MANAGEMENT, 1995, 31 (05) : 735 - 751
  • [7] Volunteered and crowdsourced geographic information: the OpenStreetMap project
    Bertolotto, Michela
    McArdle, Gavin
    Schoen-Phelan, Bianca
    [J]. JOURNAL OF SPATIAL INFORMATION SCIENCE, 2020, (20): : 65 - 70
  • [8] Learning from crowdsourced labeled data: a survey
    Zhang, Jing
    Wu, Xindong
    Sheng, Victor S.
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 2016, 46 (04) : 543 - 576
  • [9] Learning from crowdsourced labeled data: a survey
    Jing Zhang
    Xindong Wu
    Victor S. Sheng
    [J]. Artificial Intelligence Review, 2016, 46 : 543 - 576
  • [10] SEMANTIC LOCATION EXTRACTION FROM CROWDSOURCED DATA
    Koswatte, S.
    Mcdougall, K.
    Liu, X.
    [J]. XXIII ISPRS CONGRESS, COMMISSION II, 2016, 41 (B2): : 543 - 547