Approximations of non-smooth integral type functionals of one dimensional diffusion processes

被引:12
|
作者
Kohatsu-Higa, A. [1 ,2 ]
Makhlouf, A. [2 ,3 ]
Ngo, H. L. [2 ,4 ]
机构
[1] Ritsumeikan Univ, Kusatsu, Shiga 5258577, Japan
[2] Japan Sci & Technol Agcy, Tokyo, Japan
[3] Univ Tunis El Manar, Tunis, Tunisia
[4] Hanoi Natl Univ Educ, Hanoi, Vietnam
关键词
Non-smooth functionals of one-dimensional diffusions; Occupation time; Local time; Approximation; OCCUPATION TIME; DISCRETIZATION; CONVERGENCE; SIMULATION;
D O I
10.1016/j.spa.2014.01.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we obtain the weak and strong rates of convergence of time integrals of non-smooth functions of a one dimensional diffusion process. We propose the use of the exact simulation scheme to simulate the process at discretization points. In particular, we also present the rates of convergence for the weak and strong errors of approximation for the local time of a one dimensional diffusion process as an application of our method. (c) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1881 / 1909
页数:29
相关论文
共 50 条
  • [1] Nonlocal energy functionals and determinantal point processes on non-smooth domains
    Lin, Zhengjiang
    MATHEMATISCHE ZEITSCHRIFT, 2024, 307 (03)
  • [3] Topological characteristics of non-smooth functionals
    Klimov, VS
    IZVESTIYA MATHEMATICS, 1998, 62 (05) : 969 - 984
  • [4] Adjoint Extremal Problem for Non-Smooth Functionals
    Baran, Inna
    Orlov, Igor
    2017 CONSTRUCTIVE NONSMOOTH ANALYSIS AND RELATED TOPICS (DEDICATED TO THE MEMORY OF V.F. DEMYANOV) (CNSA), 2017, : 23 - 26
  • [5] ON MARTINGALE REPRESENTATIONS OF NON-SMOOTH BROWNIAN FUNCTIONALS
    Berikashvili V.
    Jokhadze V.
    Namgalauri E.
    Purtukhia O.
    Journal of Mathematical Sciences, 2024, 280 (3) : 480 - 487
  • [6] Coerciveness property for a class of non-smooth functionals
    Motreanu, D
    Motreanu, VV
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2000, 19 (04): : 1087 - 1093
  • [7] Numerical Approximations for the Variable Coefficient Fractional Diffusion Equations with Non-smooth Data
    Zheng, Xiangcheng
    Ervin, Vincent J.
    Wang, Hong
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2020, 20 (03) : 573 - 589
  • [8] Minimax Problem of Simultaneous Optimization of Smooth and Non-Smooth Functionals
    Mizintseva, Maria
    Ovsyannikov, Dmitri
    2017 CONSTRUCTIVE NONSMOOTH ANALYSIS AND RELATED TOPICS (DEDICATED TO THE MEMORY OF V.F. DEMYANOV) (CNSA), 2017, : 218 - 221
  • [9] Approximations of Nonlinear Integral Functionals of Entropy Type
    Bogachev, V., I
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2020, 310 (01) : 1 - 11
  • [10] Approximations of Nonlinear Integral Functionals of Entropy Type
    V. I. Bogachev
    Proceedings of the Steklov Institute of Mathematics, 2020, 310 : 1 - 11