Bivariate negative binomial generalized linear models for environmental count data

被引:4
|
作者
Iwasaki, Masakazu [1 ]
Tsubaki, Hiroe [1 ]
机构
[1] Univ Tsukuba, Grad Sch Business Sci, Bunkyo Ku, Tokyo 1120012, Japan
关键词
bivariate negative binomial generalized linear models (BIVARNB; GLM); bivariate negative binomial distribution; bivariate gamma type GLM; bivariate count data analysis;
D O I
10.1080/02664760600744157
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a new bivariate negative binomial model with constant correlation structure, which was derived from a contagious bivariate distribution of two independent Poisson mass functions, by mixing the proposed bivariate gamma type density with constantly correlated covariance structure (Iwasaki & Tsubaki, 2005), which satisfies the integrability condition of McCullagh & Nelder (1989, p. 334). The proposed bivariate gamma type density comes from a natural exponential family. Joe (1997) points out the necessity of a multivariate gamma distribution to derive a multivariate distribution with negative binomial margins, and the luck of a convenient form of multivariate gamma distribution to get a model with greater flexibility in a dependent structure with indices of dispersion. In this paper we first derive a new bivariate negative binomial distribution as well as the first two cumulants, and, secondly, formulate bivariate generalized linear models with a constantly correlated negative binomial covariance structure in addition to the moment estimator of the components of the matrix. We finally fit the bivariate negative binomial models to two correlated environmental data sets.
引用
收藏
页码:909 / 923
页数:15
相关论文
共 50 条
  • [1] Generalized bivariate count data regression models
    Gurmu, S
    Elder, J
    [J]. ECONOMICS LETTERS, 2000, 68 (01) : 31 - 36
  • [2] Negative binomial mixed models for analyzing microbiome count data
    Xinyan Zhang
    Himel Mallick
    Zaixiang Tang
    Lei Zhang
    Xiangqin Cui
    Andrew K. Benson
    Nengjun Yi
    [J]. BMC Bioinformatics, 18
  • [3] Negative binomial mixed models for analyzing microbiome count data
    Zhang, Xinyan
    Mallick, Himel
    Tang, Zaixiang
    Zhang, Lei
    Cui, Xiangqin
    Benson, Andrew K.
    Yi, Nengjun
    [J]. BMC BIOINFORMATICS, 2017, 18
  • [4] Compound negative binomial shared frailty models for bivariate survival data
    Hanagal, David D.
    Dabade, Alok D.
    [J]. STATISTICS & PROBABILITY LETTERS, 2013, 83 (11) : 2507 - 2515
  • [5] Regression models for count data based on the negative binomial(p) distribution
    Hardin, James W.
    Hilbe, Joseph M.
    [J]. STATA JOURNAL, 2014, 14 (02): : 280 - 291
  • [6] A bivariate zero-inflated negative binomial regression model for count data with excess zeros
    Wang, PM
    [J]. ECONOMICS LETTERS, 2003, 78 (03) : 373 - 378
  • [7] Fitting Bivariate Generalized Binomial Models of the Sarmanov Type
    Lee, JooYong
    Kim, KeeYoung
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2009, 22 (02) : 271 - 280
  • [8] Score tests for overdispersion in the bivariate negative binomial models
    Jung, Byoung Cheol
    Jhun, Myoungshic
    Han, Sang Moon
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2009, 79 (01) : 11 - 24
  • [9] Applying Negative Binomial Distribution in Diagnostic Classification Models for Analyzing Count Data
    Liu, Ren
    Heo, Ihnwhi
    Liu, Haiyan
    Shi, Dexin
    Jiang, Zhehan
    [J]. APPLIED PSYCHOLOGICAL MEASUREMENT, 2022, : 64 - 75
  • [10] ANALYZING HISTORICAL COUNT DATA - POISSON AND NEGATIVE BINOMIAL REGRESSION-MODELS
    BECK, EM
    TOLNAY, SE
    [J]. HISTORICAL METHODS, 1995, 28 (03): : 125 - 131