Solution of quantum integrable systems from quiver gauge theories

被引:1
|
作者
Dorey, Nick [1 ]
Zhao, Peng [2 ]
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge, England
[2] SUNY Stony Brook, Simons Ctr Geometry & Phys, Stony Brook, NY 11794 USA
来源
关键词
Bethe Ansatz; Supersymmetric gauge theory; CALOGERO-MOSER; DIFFERENTIAL-EQUATIONS; SEPARATION; MODELS;
D O I
10.1007/JHEP02(2017)118
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We construct new integrable systems describing particles with internal spin from four-dimensional N = 2 quiver gauge theories. The models can be quantized and solved exactly using the quantum inverse scattering method and also using the Bethe/Gauge correspondence.
引用
收藏
页数:40
相关论文
共 50 条
  • [1] Solution of quantum integrable systems from quiver gauge theories
    Nick Dorey
    Peng Zhao
    [J]. Journal of High Energy Physics, 2017
  • [2] Quantum integrable systems from supergroup gauge theories
    Heng-Yu Chen
    Taro Kimura
    Norton Lee
    [J]. Journal of High Energy Physics, 2020
  • [3] Quantum integrable systems from supergroup gauge theories
    Chen, Heng-Yu
    Kimura, Taro
    Lee, Norton
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (09)
  • [4] Quiver gauge theories and integrable lattice models
    Junya Yagi
    [J]. Journal of High Energy Physics, 2015
  • [5] Quiver gauge theories and integrable lattice models
    Yagi, Junya
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2015, (10):
  • [6] INSTANTON PARTITION FUNCTIONS OF N=2 QUIVER GAUGE THEORIES AND INTEGRABLE SYSTEMS
    Pestun, V.
    [J]. XVIITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS, 2014, : 693 - 693
  • [7] Quantum Geometry and Quiver Gauge Theories
    Nekrasov, Nikita
    Pestun, Vasily
    Shatashvili, Samson
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 357 (02) : 519 - 567
  • [8] Quantum Geometry and Quiver Gauge Theories
    Nikita Nekrasov
    Vasily Pestun
    Samson Shatashvili
    [J]. Communications in Mathematical Physics, 2018, 357 : 519 - 567
  • [9] QUANTUM INTEGRABLE SYSTEMS OF PARTICLES AS GAUGE-THEORIES
    GORSKY, A
    NEKRASOV, N
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 1994, 100 (01) : 874 - 878
  • [10] Quantum cohomology and quantum hydrodynamics from supersymmetric quiver gauge theories
    Bonelli, Giulio
    Sciarappa, Antonio
    Tanzini, Alessandro
    Vasko, Petr
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2016, 109 : 3 - 43