Waxy oils: Deformation-dependent materials

被引:11
|
作者
Legnani, Amanda [1 ]
Santos, Tainan G. M. [1 ]
Andrade, Diogo E., V [1 ]
Negrao, Cezar O. R. [1 ]
机构
[1] Fed Univ Technol Parana UTFPR, Acad Dept Mech DAMEC, Postgrad Program Mech & Mat Engn PPGEM, Res Ctr Rheol & Nonnewtonian Fluids CERNN, R Deputado Heitor Alencar Furtado 5000,Bloco N, BR-81280340 Curitiba, Parana, Brazil
关键词
Waxy oil; Flow curve; Maximum shear rate; Total deformation; YIELD-STRESS; CRUDE OILS; RHEOLOGICAL BEHAVIOR; FLOW PROPERTIES; TEMPERATURE; MODEL; CRYSTALLIZATION; QUIESCENT; STRENGTH; GELATION;
D O I
10.1016/j.jnnfm.2020.104378
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Waxy oils are thermal and shear dependent materials as the initial and final cooling temperatures, cooling rate, shear rate applied during the cooling and the aging time affect the rheological properties of the material. As reported in recent papers, the waxy oil equilibrium flow curve is not only a function of thermal and shear histories but also of the maximum shear rate imposed on the sample. In the current work, the effect of the shear history on the flow curve of model waxy oils is revisited by carrying out controlled shear rate experiments in rotational rheometers. The experiments consisted of imposing different shear rate plateaus for different times so as to provide the same total shear deformation. The same flow curve was obtained. These findings change the perspectives for proposals of new constitutive equations of these materials.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Deformation-dependent permeability of fibrous materials
    Maleki, Mohsen
    Hashlamoun, Kotaybah
    Martinuzzi, Robert J.
    Herzog, Walter
    Federico, Salvatore
    [J]. MECHANICS OF MATERIALS, 2023, 184
  • [2] Bohr Hamiltonian with deformation-dependent mass
    Bonatsos, Dennis
    Minkov, N.
    Petrellis, D.
    Quesne, C.
    [J]. NUBA CONFERENCE SERIES -1: NUCLEAR PHYSICS AND ASTROPHYSICS, 2015, 590
  • [3] Deformation-dependent enzyme cleavage of collagen
    Wyatt, Karla E-K.
    Bourne, Jonathan W.
    Torzilli, Peter A.
    [J]. PROCEEDING OF THE ASME SUMMER BIOENGINEERING CONFERENCE - 2007, 2007, : 785 - 786
  • [4] Cell spheroid viscoelasticity is deformation-dependent
    Boot, Ruben C.
    van der Net, Anouk
    Gogou, Christos
    Mehta, Pranav
    Meijer, Dimphna H.
    Koenderink, Gijsje H.
    Boukany, Pouyan E.
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01):
  • [5] Bohr Hamiltonian with deformation-dependent mass term
    Bonatsos, Dennis
    Georgoudis, P.
    Lenis, D.
    Minkov, N.
    Quesne, C.
    [J]. PHYSICS LETTERS B, 2010, 683 (4-5) : 264 - 271
  • [6] CALCULATION OF STATIC SYSTEMS IN DEFORMATION-DEPENDENT STRESS
    KOLMS, A
    ROTHERT, H
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1990, 70 (06): : T683 - T685
  • [7] Deformation-Dependent Nonlinear Relaxation in Dense DNA Solutions
    Miyamoto, Akinori
    Murayama, Yoshihiro
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2022, 91 (07)
  • [8] An analysis of deformation-dependent electromechanical coupling in the mouse heart
    Land, Sander
    Niederer, Steven A.
    Aronsen, Jan Magnus
    Espe, Emil K. S.
    Zhang, Lili
    Louch, William E.
    Sjaastad, Ivar
    Sejersted, Ole M.
    Smith, Nicolas P.
    [J]. JOURNAL OF PHYSIOLOGY-LONDON, 2012, 590 (18): : 4553 - 4569
  • [9] Deformation-dependent polydimethylsiloxane permeability measured using osmotic microactuators
    Spitzer, Alexandra R.
    Hutchens, Shelby B.
    [J]. SOFT MATTER, 2023, 19 (31) : 6005 - 6017
  • [10] Bohr Hamiltonian with a deformation-dependent mass term for the Kratzer potential
    Bonatsos, Dennis
    Georgoudis, P. E.
    Minkov, N.
    Petrellis, D.
    Quesne, C.
    [J]. PHYSICAL REVIEW C, 2013, 88 (03):