Impact of MR sequences choice on deep learning segmentation of muscles

被引:0
|
作者
Jouvencel, Maylis [1 ]
Nguyen, Hoai-Thu [1 ]
Viallon, Magalie [2 ]
Croisille, Pierre [2 ]
Grenier, Thomas [3 ]
机构
[1] Univ Lyon, UJM St Etienne, CNRS, INSA Lyon,UCB Lyon 1,Inserm,CREATIS UMR 5220,U129, St Etienne, France
[2] Univ St Etienne, Ctr Hosp Univ St Etienne, Dept Radiol, F-42055 St Etienne, France
[3] Univ Lyon, CNRS, INSA Lyon, UCB Lyon 1,UJM St Etienne,Inserm,CREATIS UMR 5220, F-69621 Villeurbanne, France
来源
2022 16TH IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP2022), VOL 1 | 2022年
关键词
medical image segmentation; convolutional neural network; MRI; MEDICAL IMAGE SEGMENTATION;
D O I
10.1109/ICSP56322.2022.9965354
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Medical image segmentation is a critical step for many medical studies. We address the problem of muscle segmentation on MRI images using Dixon sequences and explore the impact on the segmentation results when combining the four Dixon sequences available. Different combinations were put to test using two UNet-based architectures. One used an early fusion and input the images in the same encoder, while the other used late fusion, which learns the features from the images in separated encoders and then concatenates and decodes them as a whole. Our results show that the T1 water-only image is the most appropriate image for muscle segmentation in our database and that both early and late fusion approaches did not yield significantly different results. Thus, appropriate check of most adequate contrast to consider is feasible and recommended to exquisitely match to the observed population and the early fusion architecture appears to be the most efficient design to do so when dealing with such muscle segmentation task.
引用
收藏
页码:420 / 425
页数:6
相关论文
共 50 条
  • [1] An Investigation into the Impact of Deep Learning Model Choice on Sex and Race Bias in Cardiac MR Segmentation
    Lee, Tiarna
    Puyol-Anton, Esther
    Ruijsink, Bram
    Aitcheson, Keana
    Shi, Miaojing
    King, Andrew P.
    CLINICAL IMAGE-BASED PROCEDURES, FAIRNESS OF AI IN MEDICAL IMAGING, AND ETHICAL AND PHILOSOPHICAL ISSUES IN MEDICAL IMAGING, CLIP 2023, FAIMI 2023, EPIMI 2023, 2023, 14242 : 215 - 224
  • [2] Deep learning method for segmentation of rotator cuff muscles on MR images
    Giovanna Medina
    Colleen G. Buckless
    Eamon Thomasson
    Luke S. Oh
    Martin Torriani
    Skeletal Radiology, 2021, 50 : 683 - 692
  • [3] Deep learning method for segmentation of rotator cuff muscles on MR images
    Medina, Giovanna
    Buckless, Colleen G.
    Thomasson, Eamon
    Oh, Luke S.
    Torriani, Martin
    SKELETAL RADIOLOGY, 2021, 50 (04) : 683 - 692
  • [4] Impact of deep learning segmentation methods on the robustness of MR glioblastoma radiomics
    Vuong, D.
    Daetwyler, K.
    Bogowicz, M.
    Radojewski, P.
    Meier, R.
    Reyes, M.
    Saltybaeva, N.
    Depeursinge, A.
    Bach, M.
    Piccirelli, M.
    Guckenberger, M.
    Tanadini-Lang, S.
    Wies, R.
    RADIOTHERAPY AND ONCOLOGY, 2022, 170 : S1594 - S1595
  • [5] Deep learning for automatic segmentation of thigh and leg muscles
    Abramo Agosti
    Enea Shaqiri
    Matteo Paoletti
    Francesca Solazzo
    Niels Bergsland
    Giulia Colelli
    Giovanni Savini
    Shaun I. Muzic
    Francesco Santini
    Xeni Deligianni
    Luca Diamanti
    Mauro Monforte
    Giorgio Tasca
    Enzo Ricci
    Stefano Bastianello
    Anna Pichiecchio
    Magnetic Resonance Materials in Physics, Biology and Medicine, 2022, 35 : 467 - 483
  • [6] Deep learning for automatic segmentation of thigh and leg muscles
    Agosti, Abramo
    Shaqiri, Enea
    Paoletti, Matteo
    Solazzo, Francesca
    Bergsland, Niels
    Colelli, Giulia
    Savini, Giovanni
    Muzic, Shaun I.
    Santini, Francesco
    Deligianni, Xeni
    Diamanti, Luca
    Monforte, Mauro
    Tasca, Giorgio
    Ricci, Enzo
    Bastianello, Stefano
    Pichiecchio, Anna
    MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 2022, 35 (03) : 467 - 483
  • [7] Deep Reinforcement Learning for Object Segmentation in Video Sequences
    Sahba, Farhang
    2016 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE & COMPUTATIONAL INTELLIGENCE (CSCI), 2016, : 857 - 860
  • [8] Development of a deep learning-based fully automated segmentation of rotator cuff muscles from clinical MR scans
    Kim, Sae Hoon
    Yoo, Hye Jin
    Yoon, Soon Ho
    Kim, Yong Tae
    Park, Sang Joon
    Chai, Jee Won
    Oh, Jiseon
    Chae, Hee Dong
    ACTA RADIOLOGICA, 2024, 65 (09) : 1126 - 1132
  • [9] Joint Learning of Motion Estimation and Segmentation for Cardiac MR Image Sequences
    Qin, Chen
    Bai, Wenjia
    Schlemper, Jo
    Petersen, Steffen E.
    Piechnik, Stefan K.
    Neubauer, Stefan
    Rueckert, Daniel
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT II, 2018, 11071 : 472 - 480
  • [10] Cardiac MR segmentation based on sequence propagation by deep learning
    Luo, Chao
    Shi, Canghong
    Li, Xiaoji
    Gao, Dongrui
    PLOS ONE, 2020, 15 (04):