In this study, the Taguchi method, analysis of variance, and principal component analysis were used to design the optimal parameters with respect to different quality characteristics for the continuous electrospinning of polyacrylonitrile nanofibrous yarn. The experiment was designed using a Taguchi L9(3(4)) orthogonal array. The Taguchi method is a unique statistical method for efficiently evaluating optimal parameters and the effects of different factors on quality characteristics. The experimental results obtained by this method are more accurate and reliable than one-factor-at-a-time experiments. The control factors discussed in this work include the draw ratio, nozzle size, flow rate, and draw temperature. The quality characteristics taken into consideration are fiber diameter, fiber uniformity, and fiber arrangement. The parameters to optimize the different quality characteristics were obtained from the main effect plot of the signal-to-noise ratios, after which analysis of variance and confidence intervals were applied to confirm that the results were acceptable. Multiple quality characteristics were analyzed by principal component analysis from the normalized signal-to-noise ratios and the principal component score. Combining the experimental and analysis results, the optimum parameters for multiple quality characteristics were found to be a draw ratio of 2.0, a nozzle number of 22 G, a flow rate of 7 ml/h, and a draw temperature 1 20 degrees C.