Ensemble temperature forecasts from the North American Ensemble Forecast System were assessed for quality against observations for 10 cities in western North America, for a 7-month period beginning in February 2007. Medium-range probabilistic temperature forecasts can provide information for those economic sectors exposed to temperature-related business risk, such as agriculture, energy, transportation, and retail sales. The raw ensemble forecasts were postprocessed, incorporating a 14-day moving-average forecast-observation difference, for each ensemble member. This postprocessing reduced the mean error in the sample to 0.6 degrees C or less. It is important to note that the North American Ensemble Forecast System available to the public provides bias-corrected maximum and minimum temperature forecasts. Root-mean-square-error and Pearson correlation skill scores, applied to the ensemble average forecast, indicate positive, but diminishing, forecast skill (compared to climatology) from 1 to 9 days into the future. The probabilistic forecasts were evaluated using the continuous ranked probability skill score, the relative operating characteristics skill score, and a value assessment incorporating cost-loss determination. The full suite of ensemble members provided skillful forecasts 10-12 days into the future. A rank histogram analysis was performed to test ensemble spread relative to the observations. Forecasts are underdispersive early in the forecast period, for forecast days 1 and 2. Dispersion improves rapidly but remains somewhat underdispersive through forecast day 6. The forecasts show little or no dispersion beyond forecast day 6. A new skill versus spread diagram is presented that shows the trade-off between higher skill but low spread early in the forecast period and lower skill but better spread later in the forecast period.