Conservative finite difference methods for fractional Schrodinger-Boussinesq equations and convergence analysis

被引:10
|
作者
Liao, Feng [1 ]
Zhang, Luming [2 ]
Hu, Xiuling [3 ]
机构
[1] Changshu Inst Technol, Sch Math & Stat, Changshu, Jiangsu, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Coll Sci, Nanjing, Jiangsu, Peoples R China
[3] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
conservative law; convergence; discrete energy method; mathematical induction method; Schrodinger-Boussinesq equations; GLOBAL WELL-POSEDNESS; NUMERICAL-ANALYSIS; ELEMENT-METHOD; SCHEME; SPACE; APPROXIMATION; EXISTENCE; BEHAVIOR;
D O I
10.1002/num.22351
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, two conservative finite difference schemes for fractional Schrodinger-Boussinesq equations are formulated and investigated. The convergence of the nonlinear fully implicit scheme is established via discrete energy method, while the linear semi-implicit scheme is analyzed by means of mathematical induction method. Our schemes are proved to preserve the total mass and energy in discrete level. The numerical results are given to confirm the theoretical analysis.
引用
收藏
页码:1305 / 1325
页数:21
相关论文
共 50 条