Transit clairvoyance: enhancing TESS follow-up using artificial neural networks

被引:15
|
作者
Kipping, David M. [1 ]
Lam, Christopher [1 ]
机构
[1] Columbia Univ, Dept Astron, 550 W 120th St, New York, NY 10027 USA
关键词
methods: numerical; eclipses; planets and satellites: detection; planetary systems; PLANETARY CANDIDATES; KEPLER; STARS; POPULATION; PHOTOMETRY; CATALOG; SEARCH; SIZE; KELT; TOOL;
D O I
10.1093/mnras/stw2974
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The upcoming Transiting Exoplanet Survey Satellite (TESS) mission is expected to find thousands of transiting planets around bright stars, yet for three-quarters of the fields observed the temporal coverage will limit discoveries to planets with orbital periods below 13.7 d. From the Kepler catalogue, the mean probability of these short-period transiting planets having additional longer period transiters (which would be missed by TESS) is 18 per cent, a value 10 times higher than the average star. In this work, we show how this probability is not uniform but functionally dependent upon the properties of the observed short-period transiters, ranging from less than 1 per cent up to over 50 per cent. Using artificial neural networks (ANNs) trained on the Kepler catalogue and making careful feature selection to account for the differing sensitivity of TESS, we are able to predict the most likely short-period transiters to be accompanied by additional transiters. Through cross-validation, we predict that a targeted, optimized TESS transit and/or radial velocity follow-up programme using our trained ANN would have a discovery yield improved by a factor of 2. Our work enables a near-optimal follow-up strategy for surveys following TESS targets for additional planets, improving the science yield derived from TESS and particularly beneficial in the search for habitable-zone transiting worlds.
引用
收藏
页码:3495 / 3505
页数:11
相关论文
共 50 条
  • [1] Follow-Up and Risk Assessment in Patients with Myocardial Infarction Using Artificial Neural Networks
    Gligorijevic, Tatjana
    Sevarac, Zoran
    Milovanovic, Branislav
    Dajic, Vlado
    Zdravkovic, Marija
    Hinic, Sasa
    Arsic, Marina
    Aleksic, Milica
    [J]. COMPLEXITY, 2017,
  • [2] Usefulness of artificial neural networks to predict follow-up dietary protein intake in hemodialysis patients
    Gabutti, L
    Burnier, M
    Mombelli, G
    Malé, F
    Pellegrini, L
    Marone, C
    [J]. KIDNEY INTERNATIONAL, 2004, 66 (01) : 399 - 407
  • [3] Application of neural networks to the follow-up of AIDS patients
    Giacomini, M
    Ruggiero, C
    Maillard, M
    Lillo, FB
    Varnier, OE
    [J]. MEDICAL INFORMATICS EUROPE '97: PARTS A & B, 1997, 43 : 386 - 390
  • [4] Scheduling strategies for the ESPRESSO follow-up of TESS targets
    Cabona, L.
    Viana, P. T. P.
    Landoni, M.
    Faria, J. P.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 503 (04) : 5504 - 5521
  • [5] Follow up and risk assessment using artificial neural networks in patients with myocardial infarction
    Gligorijevic, T. G.
    Milovanovic, B. M.
    Djajic, V. D.
    Sevarac, Z. S.
    Arsic, M.
    Aleksic, M. A.
    [J]. EUROPEAN HEART JOURNAL, 2017, 38 : 789 - 790
  • [6] The KELT Follow-up Network and Transit False-positive Catalog: Pre-vetted False Positives for TESS
    Collins, Karen A.
    Collins, Kevin, I
    Pepper, Joshua
    Labadie-Bartz, Jonathan
    Stassun, Keivan G.
    Gaudi, B. Scott
    Bayliss, Daniel
    Bento, Joao
    Colon, Knicole D.
    Feliz, Dax
    James, David
    Johnson, Marshall C.
    Kuhn, Rudolf B.
    Lund, Michael B.
    Penny, Matthew T.
    Rodriguez, Joseph E.
    Siverd, Robert J.
    Stevens, Daniel J.
    Yao, Xinyu
    Zhou, George
    Akshay, Mundra
    Aldi, Giulio F.
    Ashcraft, Cliff
    Awiphan, Supachai
    Basturk, Ozgur
    Baker, David
    Beatty, Thomas G.
    Benni, Paul
    Berlind, Perry
    Berriman, G. Bruce
    Berta-Thompson, Zach
    Bieryla, Allyson
    Bozza, Valerio
    Novati, Sebastiano Calchi
    Calkins, Michael L.
    Cann, Jenna M.
    Ciardi, David R.
    Clark, Ian R.
    Cochran, William D.
    Cohen, David H.
    Conti, Dennis
    Crepp, Justin R.
    Curtis, Ivan A.
    D'Ago, Giuseppe
    Diazeguigure, Kenny A.
    Dressing, Courtney D.
    Dubois, Franky
    Ellingson, Erica
    Ellis, Tyler G.
    Esquerdo, Gilbert A.
    [J]. ASTRONOMICAL JOURNAL, 2018, 156 (05):
  • [7] On-line estimation of transit time using artificial neural networks
    Tambouratzis, T
    Antonopoulos-Domis, M
    Marseguerra, M
    Padovani, E
    [J]. NUCLEAR SCIENCE AND ENGINEERING, 1998, 130 (01) : 113 - 127
  • [8] Using the OWL@OUKA telescope to follow-up the TESS planet candidates: First results
    Ghachoui, Mourad
    Benkhaldoun, Zouhair
    Soubkiou, Abderahmane
    Barkaoui, Khalid
    Daassou, Ahmed
    Yim, Hong-Suh
    Kim, Myung-Jin
    Roh, Dong-Goo
    El Azhari, Youssef
    Jabiri, Abdelhadi
    [J]. GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY VIII, 2020, 11447
  • [9] Enhancing Microwave System Health Assessment Using Artificial Neural Networks
    Paul, Alex J.
    Collins, Peter J.
    Temple, Michael A.
    [J]. IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2019, 18 (11): : 2230 - 2234
  • [10] Optimizing MARVEL for the radial velocity follow-up of TESS and PLATO transiting exoplanets
    Lanthermann, Cyprien
    De Ridder, Joris
    Sana, Hugues
    Royer, Pierre
    Defrere, Denis
    Raskin, Gert
    Vandenbussche, Bart
    Tkachenko, Andrew
    Schwab, Christian
    Van Winckel, Hans
    [J]. OBSERVATORY OPERATIONS: STRATEGIES, PROCESSES, AND SYSTEMS VIII, 2020, 11449