Non-perturbative effects and the refined topological string

被引:141
|
作者
Hatsuda, Yasuyuki [1 ,2 ]
Marino, Marcos [3 ,4 ]
Moriyama, Sanefumi [5 ,6 ]
Okuyama, Kazumi [7 ]
机构
[1] DESY, Theory Grp, D-22603 Hamburg, Germany
[2] Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan
[3] Univ Geneva, Dept Phys Theor, CH-1211 Geneva, Switzerland
[4] Univ Geneva, Sect Math, CH-1211 Geneva, Switzerland
[5] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648602, Japan
[6] Nagoya Univ, Grad Sch Math, Nagoya, Aichi 4648602, Japan
[7] Shinshu Univ, Dept Phys, Matsumoto, Nagano 3908621, Japan
来源
基金
瑞士国家科学基金会;
关键词
AdS-CFT Correspondence; Topological Strings; M-Theory;
D O I
10.1007/JHEP09(2014)168
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The partition function of ABJM theory on the three-sphere has nonperturbative corrections due to membrane instantons in the M-theory dual. We show that the full series of membrane instanton corrections is completely determined by the refined topological string on the Calabi-Yau manifold known as local P-1 x P-1, in the Nekrasov-Shatashvili limit. Our result can be interpreted as a first-principles derivation of the full series of non-perturbative effects for the closed topological string on this Calabi-Yau background. Based on this, we make a proposal for the non-perturbative free energy of topological strings on general, local Calabi-Yau manifolds.
引用
收藏
页码:1 / 42
页数:42
相关论文
共 50 条
  • [1] Non-perturbative effects and the refined topological string
    Yasuyuki Hatsuda
    Marcos Mariño
    Sanefumi Moriyama
    Kazumi Okuyama
    [J]. Journal of High Energy Physics, 2014
  • [2] Non-perturbative string theory
    Dijkgraaf, RH
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2003, 18 : 34 - 45
  • [3] Introduction to non-perturbative string theory
    Kiritsis, E
    [J]. TRENDS IN THEORETICAL PHYSICS - CERN-SANTIAGO DE COMPOSTELA-LA PLATA MEETING, 1998, (419): : 265 - 308
  • [4] The string of variable density: Perturbative and non-perturbative results
    Amore, Paolo
    [J]. ANNALS OF PHYSICS, 2010, 325 (12) : 2679 - 2696
  • [5] Non-perturbative superpotentials in string theory
    Witten, E
    [J]. NUCLEAR PHYSICS B, 1996, 474 (02) : 343 - 360
  • [6] Constraint supersymmetry breaking and non-perturbative effects in string theory
    Kokorelis, C
    [J]. RECENT DEVELOPMENTS IN GENERAL RELATIVITY, GENOA 2000, 2002, : 429 - 433
  • [7] On the non-perturbative effects
    Manjavidze, J
    Voronyuk, V
    [J]. CZECHOSLOVAK JOURNAL OF PHYSICS, 2004, 54 : B57 - B62
  • [8] Holomorphic couplings in non-perturbative string compactifications
    Klevers, Denis
    [J]. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2012, 60 (1-2): : 3 - 213
  • [9] Mathematical Structures of Non-perturbative Topological String Theory: From GW to DT Invariants
    Murad Alim
    Arpan Saha
    Jörg Teschner
    Iván Tulli
    [J]. Communications in Mathematical Physics, 2023, 399 : 1039 - 1101
  • [10] The non-perturbative SO(32) heterotic string
    Hull, CM
    [J]. PHYSICS LETTERS B, 1999, 462 (3-4) : 271 - 276