On singularities in composite piezoelectric wedges and junctions

被引:70
|
作者
Xu, XL [1 ]
Rajapakse, RKND [1 ]
机构
[1] Univ Manitoba, Dept Civil & Geol Engn, Winnipeg, MB R3T 5V6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
piezoelectric; singularities; conductors; electric field; stress concentrations; adaptive structures; wedges; cracks; interfaces;
D O I
10.1016/S0020-7683(99)00143-2
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The plane problems of piezoelectric wedges and multi-material wedges/junctions involving piezoelectrics are studied in this payer. The study is focused on the singular behaviour of electroelastic fields at the corner of wedges and junctions, The polarization orientation of the piezoelectric medium may be arbitrary. The problem is formulated by extending Lekhnitskii's complex potential functions. In the homogeneous piezoelectric cases of a half plane and a semi-infinite crack, it is shown that the singularity is invariant with respect to the direction of polarization and explicit solutions are derived for homogeneous boundary condition combinations. In general cases involving multi-material systems, the or der of singularity is determined by solving a transcendental characteristic equation derived on the basis of boundary conditions and geometry. The accuracy of the numerical algorithm is verified by comparing with the existing results for pure elastic wedges. Numerical results of homogeneous piezoelectric wedges indicate that electric boundary conditions have a significant effect on the order of singularities. a selected set of practically useful wedges and junctions involving piezoelectrics are studied to examine the influence of wedge angle, polarization orientation, material types, and boundary and interface conditions on the order of singularity of electroelastic fields. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:3253 / 3275
页数:23
相关论文
共 50 条
  • [1] Electroelastic singularities in piezoelectric-elastic wedges and junctions
    Chen, MC
    Zhu, JJ
    Sze, KY
    [J]. ENGINEERING FRACTURE MECHANICS, 2006, 73 (07) : 855 - 868
  • [2] The stress singularities at the apex of composite piezoelectric junctions
    S.-M. Weng
    C.-H. Chue
    [J]. Archive of Applied Mechanics, 2004, 73 : 638 - 649
  • [3] The stress singularities at the apex of composite piezoelectric junctions
    Weng, SM
    Chue, CH
    [J]. ARCHIVE OF APPLIED MECHANICS, 2004, 73 (9-10) : 638 - 649
  • [4] Singularities of Three-Dimensional Cubic Piezoelectric Quasicrystal Composite Wedges and Spaces
    Xiang Mu
    Ting Cao
    Wenshuai Xu
    Zhaowei Zhu
    Taiyan Qin
    Liangliang Zhang
    Yang Gao
    [J]. Acta Mechanica Solida Sinica, 2023, 36 : 143 - 155
  • [5] Singularities of Three-Dimensional Cubic Piezoelectric Quasicrystal Composite Wedges and Spaces
    Mu, Xiang
    Cao, Ting
    Xu, Wenshuai
    Zhu, Zhaowei
    Qin, Taiyan
    Zhang, Liangliang
    Gao, Yang
    [J]. ACTA MECHANICA SOLIDA SINICA, 2023, 36 (01) : 143 - 155
  • [6] Discussion of Antiplane Singularities of Piezoelectric–Dielectric and Piezoelectric–Conductor Wedges
    T. J. C. Liu
    C. D. Chen
    C. H. Chue
    [J]. Archive of Applied Mechanics, 2006, 76 : 245 - 248
  • [7] STRESS SINGULARITIES IN LAMINATED COMPOSITE WEDGES
    OJIKUTU, IO
    LOW, RD
    SCOTT, RA
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1984, 20 (08) : 777 - 790
  • [8] STRESS SINGULARITIES IN LAMINATED COMPOSITE WEDGES - COMMENT
    VANDERWEEEN, F
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1986, 22 (12) : 1431 - 1434
  • [9] Stress singularities in anisotropic multi-material wedges and junctions
    Chen, HP
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1998, 35 (11) : 1057 - 1073
  • [10] Discussion of antiplane singularities of piezoelectric-dielectric and piezoelectric-conductor wedges
    Liu, T. J. C.
    Chen, C. D.
    Chue, C. H.
    [J]. ARCHIVE OF APPLIED MECHANICS, 2006, 76 (3-4) : 245 - 248