Nontrivial Solutions for Asymmetric Kirchhoff Type Problems

被引:1
|
作者
Pei, Ruichang [1 ]
Zhang, Jihui [2 ]
机构
[1] Tianshui Normal Univ, Sch Math & Stat, Tianshui 741001, Peoples R China
[2] Nanjing Normal Univ, Inst Math, Sch Math & Comp Sci, Nanjing 210097, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
POSITIVE SOLUTIONS; EQUATION; EXISTENCE; INFINITY;
D O I
10.1155/2014/163645
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a class of particular Kirchhoff type problems with a right-hand side nonlinearity which exhibits an asymmetric growth at +infinity and -infinity in R-N (N = 2,3). Namely, it is 4-linear at -infinity and 4-superlinear at +infinity. However, it need not satisfy the Ambrosetti-Rabinowitz condition on the positive semiaxis. Some existence results for nontrivial solution are established by combining Mountain Pass Theorem and a variant version of Mountain Pass Theorem with Moser-Trudinger inequality.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Nontrivial solutions of Kirchhoff type problems
    Sun, Juan
    Liu, Shibo
    APPLIED MATHEMATICS LETTERS, 2012, 25 (03) : 500 - 504
  • [2] Multiplicity of Nontrivial Solutions for Kirchhoff Type Problems
    Bitao Cheng
    Xian Wu
    Jun Liu
    Boundary Value Problems, 2010
  • [3] Multiplicity of Nontrivial Solutions for Kirchhoff Type Problems
    Cheng, Bitao
    Wu, Xian
    Liu, Jun
    BOUNDARY VALUE PROBLEMS, 2010,
  • [4] Nontrivial solutions for Kirchhoff-type problems with a parameter
    Xu, Liping
    Chen, Haibo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 433 (01) : 455 - 472
  • [5] Multiple results on nontrivial solutions of discrete Kirchhoff type problems
    Long, Yuhua
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (01) : 1 - 17
  • [6] Existence of nontrivial solutions for a class of nonlocal Kirchhoff type problems
    Zeng-Qi Ou
    Chun Li
    Boundary Value Problems, 2018
  • [7] Existence of nontrivial solutions for a class of nonlocal Kirchhoff type problems
    Ou, Zeng-Qi
    Li, Chun
    BOUNDARY VALUE PROBLEMS, 2018,
  • [8] Multiple results on nontrivial solutions of discrete Kirchhoff type problems
    Yuhua Long
    Journal of Applied Mathematics and Computing, 2023, 69 : 1 - 17
  • [9] Nontrivial solutions of Kirchhoff-type problems via the Yang index
    Perera, K
    Zhang, ZT
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 221 (01) : 246 - 255
  • [10] Existence of nontrivial solutions for Kirchhoff-type problems with jumping nonlinearities
    Rong, Ting
    Li, Fuyi
    Liang, Zhanping
    APPLIED MATHEMATICS LETTERS, 2019, 95 (137-142) : 137 - 142