Sarnak's Conjecture for Irregular Flows on Infinite-dimensional Torus

被引:1
|
作者
Liu, Qing Yang [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
关键词
Sarnak's disjointness conjecture; Mobius function; irregular flow; skew product; infinite-dimensional torus;
D O I
10.1007/s10114-019-8536-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Sarnak's Disjointness Conjecture states that the Mobius function is disjoint with any zero-entropy flow. This note establishes this conjecture, with a rate, for Furstenberg's irregular flows on the infinite-dimensional torus.
引用
收藏
页码:1541 / 1548
页数:8
相关论文
共 50 条
  • [1] Sarnak's Conjecture for Irregular Flows on Infinite-dimensional Torus
    Qing Yang LIU
    Acta Mathematica Sinica,English Series, 2019, (09) : 1541 - 1548
  • [2] Sarnak’s Conjecture for Irregular Flows on Infinite-dimensional Torus
    Qing Yang Liu
    Acta Mathematica Sinica, English Series, 2019, 35 : 1541 - 1548
  • [3] Lipschitz functions on the infinite-dimensional torus
    Faifman, Dmitry
    Klartag, Bo'az
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2016, 18 (01)
  • [4] Expansive Endomorphisms on the Infinite-Dimensional Torus
    S. D. Glyzin
    A. Yu. Kolesov
    N. Kh. Rozov
    Functional Analysis and Its Applications, 2020, 54 : 241 - 256
  • [5] Maximal operators on the infinite-dimensional torus
    Kosz, Dariusz
    Martinez-Perales, Javier C.
    Paternostro, Victoria
    Rela, Ezequiel
    Roncal, Luz
    MATHEMATISCHE ANNALEN, 2023, 385 (3-4) : 95 - 95
  • [6] Expansive Endomorphisms on the Infinite-Dimensional Torus
    Glyzin, S. D.
    Kolesov, A. Yu.
    Rozov, N. Kh.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2020, 54 (04) : 241 - 256
  • [7] On differentiation of integrals in the infinite-dimensional torus
    Kosz, Dariusz
    STUDIA MATHEMATICA, 2021, 258 (01) : 103 - 119
  • [8] Maximal operators on the infinite-dimensional torus
    Dariusz Kosz
    Javier C. Martínez-Perales
    Victoria Paternostro
    Ezequiel Rela
    Luz Roncal
    Mathematische Annalen, 2023, 385 : 1 - 39
  • [9] Topologically Mixing Diffeomorphisms on the Infinite-Dimensional Torus
    S. D. Glyzin
    A. Yu. Kolesov
    Mathematical Notes, 2023, 113 : 859 - 863
  • [10] Summation of Fourier Series on the Infinite-Dimensional Torus
    D. V. Fufaev
    Mathematical Notes, 2018, 103 : 990 - 996